

User Manual

RSB-4210 Evaluation Kit

Freescale i.MX53 Processor -ARM® Cortex[™] A8 Architecture

Copyright

The documentation and the software included with this product are copyrighted 2012 by Advantech Co., Ltd. All rights are reserved. Advantech Co., Ltd. reserves the right to make improvements in the products described in this manual at any time without notice. No part of this manual may be reproduced, copied, translated or transmitted in any form or by any means without the prior written permission of Advantech Co., Ltd. Information provided in this manual is intended to be accurate and reliable. However, Advantech Co., Ltd. assumes no responsibility for its use, nor for any infringements of the rights of third parties, which may result from its use.

Acknowledgements

ARM is trademarks of ARM Corporation.

Freescale is trademarks of Freescale Corporation.

Microsoft Windows are registered trademarks of Microsoft Corp.

All other product names or trademarks are properties of their respective owners.

Product Warranty (2 years)

Advantech warrants to you, the original purchaser, that each of its products will be free from defects in materials and workmanship for two years from the date of purchase.

This warranty does not apply to any products which have been repaired or altered by persons other than repair personnel authorized by Advantech, or which have been subject to misuse, abuse, accident or improper installation. Advantech assumes no liability under the terms of this warranty as a consequence of such events.

Because of Advantech's high quality-control standards and rigorous testing, most of our customers never need to use our repair service. If an Advantech product is defective, it will be repaired or replaced at no charge during the warranty period. For outof-warranty repairs, you will be billed according to the cost of replacement materials, service time and freight. Please consult your dealer for more details.

If you think you have a defective product, follow these steps:

- 1. Collect all the information about the problem encountered. (For example, CPU speed, Advantech products used, other hardware and software used, etc.) Note anything abnormal and list any onscreen messages you get when the problem occurs.
- 2. Call your dealer and describe the problem. Please have your manual, product, and any helpful information readily available.
- 3. If your product is diagnosed as defective, obtain an RMA (return merchandize authorization) number from your dealer. This allows us to process your return more quickly.
- 4. Carefully pack the defective product, a fully-completed Repair and Replacement Order Card and a photocopy proof of purchase date (such as your sales receipt) in a shippable container. A product returned without proof of the purchase date is not eligible for warranty service.
- 5. Write the RMA number visibly on the outside of the package and ship it prepaid to your dealer.

Part No. 2002421000 Printed in Taiwan Edition 1 December 2012

Packing List

Before setting up the system, check that the items listed below are included and in good condition. If any item does not accord with the table, please contact your dealer immediately.

- RSB-4210 (P/N: RSB-4210CF-A78AAE)
- 7" LED PANEL 320N 4WR T/S 800X480(G), 97G070V1N0F-2, P/N: 96LEDK-A070WV32RB1)
- LCD Backlight Cable (P/N: 1700019577)
- LVDS Cable (P/N: 1700014418)
- Touch Cable (P/N: 1700000194)
- SQFlash SD Card SLC 2G, 2CH(-40 ~ 85° C) (P/N: SQF-ISDS2-2G-ETE)
- A CABLE SATA 15P/1*4P-2.5 35cm for AIMB-213 (P/N: 1700018785)
- M Cable SATA 7P/SATA 7P 8CM C=R 180/180 (P/N:1700004711)
- Mini USB Host Cable (P/N: 1700019076)
- Mini USB Client Cable (P/N: 1700019077)
- USB Type-A Cable (P/N: 1700019129)
- ADAPTER 100-240 V 65 W 19 V 3.42 A 9NA0651256 (P/N: 1757003734)
- A Cable 2*8P-2.0/SPEAKER*2+DC JACK*3 40CM(P/N: 1700019546-11)
- F Cable IDE#2 10P-2.0/D-SUB 9P(M) 25CM (P/N: 1700100250)
- Terminal connector 9P Female (P/N: 1654909900)
- DVD-ROM for RSB-4210 Evaluation Kit (P/N: 2062421011)
- RS-232 and RS-485 cable (P/N: 1700019474)
- RS-422 cable (P/N: 1700019476)

Power Cord (Optional)

- 3 pin Power Cord for USA standard (P/N: 1700001524)
- 3 pin Power Cord for Europe standard (P/N: 170203183C)
- 3 pin Power Cord for UK standard (P/N: 170203180A)

Charger Board & Battery (Optional)

- A cable 1*6P-2.5/1*6P-2.5 140 mm (P/N: 1700018394)
- A cable 2*4P-2.0/2*4P-2.0 90 mm (P/N: 1700018395)
- PCM-739 Battery charger Board (P/N: 969K073900E)
- Battery 11.1 V 6300 mAh 3S3P (P/N: 1760001300)

Safety Instructions

- 1. Read these safety instructions carefully.
- 2. Keep this User Manual for later reference.
- 3. Disconnect this equipment from any AC outlet before cleaning. Use a damp cloth. Do not use liquid or spray detergents for cleaning.
- 4. For plug-in equipment, the power outlet socket must be located near the equipment and must be easily accessible.
- 5. Keep this equipment away from humidity.
- 6. Put this equipment on a reliable surface during installation. Dropping it or letting it fall may cause damage.
- 7. The openings on the enclosure are for air convection. Protect the equipment from overheating. DO NOT COVER THE OPENINGS.
- 8. Make sure the voltage of the power source is correct before connecting the equipment to the power outlet.
- 9. Position the power cord so that people cannot step on it. Do not place anything over the power cord.
- 10. All cautions and warnings on the equipment should be noted.
- 11. If the equipment is not used for a long time, disconnect it from the power source to avoid damage by transient overvoltage.
- 12. Never pour any liquid into an opening. This may cause fire or electrical shock.
- 13. Never open the equipment. For safety reasons, the equipment should be opened only by qualified service personnel.
- 14. If one of the following situations arises, get the equipment checked by service personnel:
 - The power cord or plug is damaged.
 - Liquid has penetrated into the equipment.
 - The equipment has been exposed to moisture.
 - The equipment does not work well, or you cannot get it to work according to the user's manual.
 - The equipment has been dropped and damaged.
 - The equipment has obvious signs of breakage.

Contents

Chapter	1	Overview1
	1.1	Introduction
	1.2	Features
	1.3	Hardware Specifications
	1.4	Board Block Diagram
		Figure 1.1 RSB-4210 Board Block Diagram
Chapter	2	H/W Installation5
	2.1	Development Kit H/W Installation
		Figure 2.1 RSB-4210 Development Kit Assembly
		2.1.1 RSB-4210 (Part-A)
		2.1.2 7" LVDS LCD Module (Part-B1)
		2.1.3 LCD Backlight Cable (Part-B2)8
		2.1.4 LVDS Cable (Part-B3)8
		2.1.5 Touch Cable (Part-B4)8
		2.1.6 SQFlash SD Card (Part-C)
		2.1.7 SATA Power Cable (Part-D)
		2.1.8 SATA Cable (Part-E)
		2.1.9 Mini USB Host Cable (Part-F)
		2.1.10 Mini USB Client Cable (Part-G)
		2.1.11 USB Type-A Cable (Part-H)
		2.1.12 Julliper (Part-I)
		2.1.15 Null modelli Cable ($\operatorname{Falt-J}$)
		2.1.14 19 V Tower Adapter (1 art-1)
		2.1.16 Speaker & Audio Cables (Part-M)
		2 1 17 Power Cable for Charger Board (Part-N1)
		2.1.18 Signal Cable for Charger Board (Part-N2)
		2.1.19 Charger Board (Part-N3)
		2.1.20 Battery (Part-N4)
		2.1.21 Keypad Cable (Part-O1)
		2.1.22 Keypad (Part-O2)
		2.1.23 Cable for Suspend/Reset Button (Part-P)
		2.1.24 COM Port Cable (D-SUB 9P to Housing) (Part-Q)9
		2.1.25 RS-232 Loopback (Part-R)9
		2.1.26 Terminal Block for CAN/RS-485 (Part-S)9
	2.2	RSB-4210 Connectors10
		2.2.1 Wafer for 4-wire Resistive Type Touch Screen (CN1)10
		Figure 2.2 Wafer for 4-wire Resistive Type Touch Screen 11
		2.2.2 Phoenix Connector for CAN Bus (CN2)11
		Figure 2.3 Phoenix Connector for CAN Bus
		Figure 2.4 CAN Application12
		Figure 2.5 Schematics of CAN on RSB-4210
		2.2.3 Phoenix Connector for COM3, RS-485 (CN3) 12
		Figure 2.6 Phoenix Connector for COM3, RS-485
		Figure 2.7 RS-485 Application
		Figure 2.8 Schematics of RS-485 on RSB-4210
		2.2.4 System Bus (CN4)
		Figure 2.9 System Bus
		2.2.5 Pin Header for COM5, RS-232 (TX/RX/RTS/CTS) (CN5)
		Figure 2.10Pin Header for COM5, RS-232 (TX/RX/RTS/CTS) 14
		2.2.0 PIN Header for COM4, 3.3V TTL (TX/RX/RTS/CTS) (CN6)
		Figure 2.11 Pin meader for COIVI4, 3.3V TTL (TX/RX/RTS/CTS) 15

2.2.7	Pin Header for I2S (CN7)	15
220	LVDS01 CD Connector (CNR)	10
2.2.0	Eigure 2 121 VDS0 LCD Connector	10
220	Pigule 2. 15LVD30 LCD Connector	17
2.2.3	Finite adder for COM1 PS_{232} (TX/RX) (CN9)	17
2 2 10	Pin Header for SD2 (CN10)	17
2.2.10	Figure 2 15Pin Header for SD2	18
2211	Wafer for Backlight Power and Controller (CN11)	10
2.2.11	Figure 2 16Wafer for Backlight Power and Controller	10
2212	MiniPCIe Connector-Latch (CN12) and Connector (CN13)	10
2.2.12	Figure 2 17MiniPCIe Connector-Latch (CN12) and Connector	19
	(CN13)	10
2213	LVDS1 LCD Connector (CN14)	20
2.2.10	Figure 2 181 VDS1 LCD Connector	20
2214	Pin Header for Itag (CN15)	21
2.2.14	Figure 2 19Pin Header for Itag	21
2215	Wafer for SATA power (CN16)	21
2.2.10	Figure 2 20Wafer for SATA power	21
2216	Wafer for Power ON/OFF (CN17)	22
2.2.10	Figure 2 21 Pin Header for Power Button	22
2217	Ethernet I AN182 Connector (CN18)	22
2.2.17	Figure 2 22Ethernet I AN1 & I AN2 Connector	22
2210	Water for Coin Battery (CN10)	20
2.2.10	Figure 2.22Wafer for Coin Battery	23
2 2 10	Figure 2.25 Water for Com Battery	23
2.2.19	Sim Galu Siol (GN20)	24
2 2 20	Pigule 2.245IW Gald Slot	24
2.2.20	Fin Header for Reset (RST_DINT)	24
0 0 04	Figure 2.25Pill meader for Reset	24
2.2.21	Fin Header for Suspend (SUS_BTNT)	25
0 0 00	Figure 2.26Pin Header for Suspend	25
2.2.22	Pin Header for Matrix Keypad (KEYPAD1)	25
0 0 00	Figure 2.27 Pin Header for Matrix Keypad	26
2.2.23	Pin Header for I2C/SPI (CN21)	26
0 0 0 4	Figure 2.28Pin Header for I2C/SPI	26
2.2.24	Pin Header for 20x pins GPIO (GPIO1)	27
	Figure 2.29Pin Header for GPIO	27
2.2.25	SATA Connector (SATA_CN1)	28
	Figure 2.30SATA Connector	28
2.2.26	Pin Header for USB_HUB1 (USB1)	28
~ ~ ~ ~	Figure 2.31 Pin Header for USB_HUB1	28
2.2.27	Water for Battery Charger Board - Power (BA1_CN1)	29
	Figure 2.32Water for Battery Charger Board - Power	29
2.2.28	Wafer for Battery Charger Board -Control Signal (BA1_CN2)	29
	Figure 2.33 Water for Battery Charger Board - Control Signal	29
2.2.29	USB OTG MINI-AB Connector (USB_OTG1)	30
	Figure 2.34USB OIG MINI-AB Connector	30
2.2.30	USB HUB_2&3 (Standard Type-A) (USB2)	30
	Figure 2.35USB CSB_HUB_2&3 (Standard Type-A)	30
2.2.31		31
0 0 00	Figure 2.36 VGA Connector (D-SUB15)	31
2.2.32		31
0 0 00		31
2.2.33	Box Header for LINE-OUT, LINE-IN, MIC-IN and L&R Speakers	3
		32
	Figure 2.38Box Header for LINE-OUT, LINE-IN, MIC-IN and L&	ĸ
0.0.0.4		32
2.2.34	D-Suby Connector for COM2, RS-232 (TX/RX/RTS/ CTS)	~~
		,32 '
	rigule 2.39D-Suby Connector for COIVI2, RS-232 (TX/RX/RTS/	

			CTS)	32
		2.2.35	DC-IN Power Jack(DCIN1)	33
			Figure 2.40DC-IN Power Jack	33
		2.2.36	SD Card Slot (SD1)	33
			Figure 2.41 SD card Slot	33
	2.3	Mecha	nical	34
		2.3.1	Connector Location	34
			Figure 2.42RSB-4210 Connector Position (Top)	34
			Figure 2.43RSB-4210 Connector Position (Bottom)	34
		2.3.2	RSB-4210 Board Dimension	35
			Figure 2.44RSB-4210 Board Dimension	35
Chapter	3	Sof	tware Functionality	.37
	31	The Br	potloader	38
	0.1	311	Communication settings	30
		312	Startup of the bootloader	30 28
		212	Change Display Output Pesclution	30
	2.2	3.1.3 MinEC	Change Display Oulput Resolution	39
	3.2			40
		3.2.1	WINEC7 BOOTUP Steps	
	0.0	3.Z.Z	Booting form On Board Flash or SATA	44
	3.3	Utilities	S	44
		3.3.1	Test Utility	44
			Figure 3.1 Test Utility	44
		3.3.2	Startup Execution	45
		3.3.3	Platform Setting	45
			Figure 3.2 General Information	45
			Figure 3.3 Display Configuration	46
			Figure 3.4 Watchdog Timer	47
			Figure 3.5 Audio Settings	48
			Figure 3.6 Miscellaneous Settings	49
	3.4	Netwo	rk	50
			Figure 3.7 Networking via Ethernet	50
	3.5	BSP C	arried Tools	50
		3.5.1	Display and Video Testing Tools	50
			Figure 3.8 Display Driver GUI	51
		352	AudioRouting	53
		353	Graphics Processing Unit Testing Tools	53
		0.0.0	Figure 3.9 Tiger Test	54
			Figure 3 10Cube Test	04 54
			Figure 3.11 Triangle Test	54
		251	Application Tool for LISP Davios Class Select	55
		5.5.4	Application Tool for USB Device Class Select	55
	2.0	Dimensi	PIQUIE 3.12036 Device Class Switch User Interface	55
	3.6	Binary		56
		3.6.1	Build WinEC/ OS Image	56
		3.6.2	Windows CE Startup Procedure	57
		3.6.3	U-boot development	57
	3.7	SDK ir	troduction	57
		3.7.1	Create a new Windows EC 7 project	57
		3.7.2	How to use SUSI	59
	3.8	Conne	ct Device with PC with Activesync	61
	3.9	Implen	nent Break Points	63
	3.10	SUSIL	.ibrary	64
		3.10.1	Package Contents	67
		3.10.2	Additional Programs	68
			Figure 3.13General Information	68
		3 10 3	SUSI API Programmer's Documentation	
		2110.0		

Appendix A	API Error Code9)3
A.1	Function Index Code	94
A.2	Library Error Code	96
A.3	Driver Error Code	98

viii

RSB-4210 User Manual

Overview

This chapter briefly introduces the RSB-4210 Platform and RSB-4210 Evaluation Kit.

1.1 Introduction

In order to offer potential RISC-based Design-to-Order-Service (DTOS) project customers with a more efficient and low risk evaluation tool, Advantech provides a variety of RISC-based evaluation kits. Before DTOS projects kick-off, customers can check their designs with these kits in detail more easily. The evaluation kits are already equipped with all of the necessary H/W and S/W parts which customers will need, thus reducing design effort and speeding up application development.

The RSB-4210 is designed as a single board computer (SBC) solution, with a Freescale i.MX53 processor based on ARM® Cortex[™] A8 architecture, which is a complete 32-bit, up to 1GHz speed SoC engine. It provides customers with a high performance board subsystem based on ARM® Cortex[™] A8 which is ready-to-run, compact, and easy-to-expand in order to meet customers' versatile needs. With flexible I/O interfaces and complete hardware and software solutions, RSB-4210 is a fast time-to-market platform for customers to develop their applications and products easily without considering system integration.

The RSB-4210 Evaluation Kit is a complete system designed for customers to evaluate RSB-4210. It integrates all of the solutions that developers will need into a package for project evaluation, application development, and solution feasibility testing that decreases lead-time and lowers initial expense. All the functions included in the kit have been certified under Linux, ensuring that project development is more simple, less risky and easier to implement.

1.2 Features

RSB-4210 incorporates a Freescale i.MX53 Processor - ARM® Cortex[™] A8 architecture as its SoC solution. The main features of this platform are a heatsink-less and compact design, and great reliability and power management making it suitable for the following applications:

- Economical HMI (Human Machine Interface)
- Self Service / Access Control
- Fleet management / Navigation
- Hand-held data collector

And the main features of Freescale i.MX53 processor are shown as follows:

- ARM® CortexTM-A8 1GHz high performance processor
- Supports OpenGL ES 2.0 and OpenVG® 1.1 hardware accelerators
- Supports full HD 1080p video decode and HD 720p video encode hardware engine Freescale Smart Speed® Technology support low power consumption
- I/O through 3.3 V I/O voltage and wide working temperature by industrial design concept
- Rich I/O for high expansion capability: UART(5), Dual LVDS, Audio, USB Host, USB OTG, Dual LAN, SD(2), SATA(1), GPIO(20), I2C(2), SPI(1), I2S(1), CAN(1), Keypad 6X6, Touch, Mini PCI-E and System Bus
- Supports SATA storage interface and CAN bus for vehicle application
- Supports Android2.3, Embedded Linux2.6 and Windows Embedded Compact 7
- Support wide working temperature -40 ~ 85° C operation temperature (optional)

1.3 Hardware Specifications

ltem	Description
Kernel	
CPU	Freescale i.MX53 1GHz (ARM Cortex A8)
2D/3D Accelerators	Support OpenGL ES 2.0 and OpenVG [™] 1.1 hardware accelerators
System RAM	512 MB (Optional: 256 MB)
Onboard Flash	2 GB (Optional: None)
RTC	Yes
Watchdog Timer	Yes
Reset	H/W reset & S/W reset
I/O	
СОМ	COM 1, RS-232, 2–wire(TX/RX), Pin header, (Debug port) COM 2, RS-232, D-Sub9 Connector(TX/RX/RTS/CTS) COM 3, RS-485, 2-pin Phoenix Connector COM 4, 3.3 V TTL, 4–wire(TX/RX/RTS/CTS), Pin header COM 5, RS-232, 4–wire(TX/RX/RTS/CTS), Pin header
Ethernet LAN	2 x 10/100 BASE-T (RJ-45)
USB Port	3 x USB 2.0 (High speed)
USB OTG	1 x USB 2.0 OTG (High speed)
SD/MMC	2 x SDIO/MMC interface (SD slot x 1+ pin header x 1)
Mini PCI-E	1 x (Controlled by USB interface only)
SIM Card slot	1
SATA	1
Touch Screen	1 x 4 - wire resistive type interface
System Bus	Yes (Address: 25 pins, data: 16 pins)
I ² C Interface	2
I ² S Interface	1
SPI Interface	1
CAN BUS	1
Hotkey/ Matrix keypad	Support 6 x 6 matrix keypad
GPIO	20 pins 3.3 V TTL level GPIOs
Buzzer control	Yes
Multimedia	
Graphic Chip	CPU internal LCD controller
LCD Resolution	Default: 800 x 480 7" WVGA Optional: 320 x 240 ~ 1920 x 1080
Dual LVDS	2 x 24-bit LVDS
HDMI	1 x (Co-lay with VGA)
VGA	1 x (Co-lay with HDMI)
Brightness/ Backlight Control	Yes
Audio	Line-in(Stereo),Line-out(Stereo),Speak-Out(Stereo)&Mic-in(Mono)
Power	
DC-input	9 ~ 24 V 5%
Battery Support	Yes (With external battery and charger board thru connector)

Power Consumption	Normal Run ~2.3 W Full Run ~3.8 W				
	1 x Power ON/OFF Pin header				
Power Control	1 x H/W reset Pin header				
	1 x Suspend Pin header				
Deves Management	-Standard mode				
Power Management	-Idle mode				
Mechanical and Environmental					
Board size	146 x 102 x 20 mm (PCB thickness 1.6 mm; 8 layer)				
Weight	110 g				
Operation Tempera-	0 ~ 60° C (32 ~ 140° F)				
ture	(-40 ~ 85° C by component change)				
Operating Humidity	5% ~ 95% Relative Humidity, non condensing				
Vibration	3.5 G, 1000 times				
Others					
RoHS	Yes				
Certification	CE/FCC Class A				
0.S	Embedded Linux 2.6.35 (Default), Android 2.3.4, and Windows Embedded Compact 7				

1.4 Board Block Diagram

Figure 1.1 RSB-4210 Board Block Diagram

H/W Installation

This chapter introduces the setup procedures of the RSB-4210 hardware, including instructions on setting jumpers and connecting peripherals, switches, indicators and mechanical drawings.

Be sure to read all safety precautions before you begin this installation procedure.

2.1 Development Kit H/W Installation

The Figure 2-1 is RSB-4210 Evaluation Kit Assembly, and the detail descriptions with Advantech P/N are shown as below.

ltem	Description	Advantech P/N
Part-A	RSB-4210	(P/N: RSB-4210CF-A78AAE)
Part-B1	7" LCD-LED Backlight, LVDS, 800x480, T/S, 97G070V1N0F-2	(P/N: 96LEDK-A070WV32RB1)
Part-B2	LCD Backlight Cable	(P/N: 1700019577)
Part-B3	LVDS Cable	(P/N: 1700014418)
Part-B4	Touch Cable	(P/N: 1700000194)
Part-C	SQFlash SD Card, SLC 2GB, (-40~85°C)	(P/N: SQF-ISDS2-2G-ETE)
Part-D	SATA Power Cable	(P/N: 1700018785)
Part-E	SATA Cable	(P/N: 1700004711)
Part-F	Mini USB Host Cable	(P/N: 1700019076)
Part-G	Mini USB Client Cable	(P/N: 1700019077)
Part-H	USB Type-A Cable	(P/N: 1700019129)
Part-I	Mini Jumper	(P/N:1653302122)
Part-J	Null modem cable	(P/N: 1700091002)
Part-K	ADAPTER, 100-240V, 19V, 3.42A.	(P/N: 1757003734)
	3 pin Power Cord (USA Standard) [Optional]	(P/N: 1700001524)
Part-L	3 pin Power Cord (Europe standard) [Optional]	(P/N: 170203183C)
	3 pin Power Cord (UK standard) [Optional]	(P/N: 170203180A)
Part-M	Speaker & Audio Cables	(P/N: 1700019546-11)
Part-N1	Power Cable for Charger Board [Optional]	(P/N: 1700018394)
Part-N2	Signal Cable for Charger Board [Optional]	(P/N: 1700018395)
Part-N3	Charger Board [Optional]	(P/N: 969K073900E)
Part-N4	Battery [Optional]	(P/N: 1760001300)
Part-O1	8*8 Keypad Cable [Optional]	(P/N: 1703200180)
Part-O2	8*8 Keypad [Optional]	(P/N: 96969315A0E)
Part-P	Suspend/Reset button cable [Optional]	(P/N:1700003414)
Part-Q	COM Port Cable	(P/N: 1700100250)
Part-R	RS-232 Loopback	(P/N: 1654909900)
Part-S	Terminal Block for CAN/RS-485	(P/N: 1652002209)

Figure 2.1 RSB-4210 Development Kit Assembly

2.1.1 RSB-4210 (Part-A)

RSB-4210 is a cost-effective, low-power, and high-performance SBC (Single Board Computer) without a heatsink, geared to satisfy the needs of industrial computing applications. Based on the Freescale i.MX53 Processor - ARM® Cortex[™] A8 architecture, RSB-4210 comes with DDR3, and iNAND flash. RSB-4210 offers convenient connector layout, simple assembly, multiple common I/Os, and includes dual 10/ 100Mbps Ethernet, three USB (Universal Serial Bus) 2.0 connectors and five serial ports for easy system expansibility.

2.1.2 7" LVDS LCD Module (Part-B1)

The 7.0 inch Color TFT-LCD Module uses a 4-wire resistive type touch sensor. The module is designed with a wide viewing angle; wide operating temperature and long life LED backlight which is well suited for Industrial Applications. An LED driving board for backlight unit is included in this panel and the structure of the LED units is replaceable. It also has a built in timing controller and LVDS interface. The display supports the WVGA (800 (H) x 480(V)) screen format and 16.2 M colors (RGB 24bits) or 262 K (RGB 18 bits) selectable.

2.1.3 LCD Backlight Cable (Part-B2)

The LVDS backlight cable connects RSB-4210 (CN11) with the LCD backlight connector of 7" LVDS LCD Module.

2.1.4 LVDS Cable (Part-B3)

The LVDS cable connects RSB-4210 LVDS0 connector (CN8) with the LCD signal connector of 7" LVDS LCD Module.

2.1.5 Touch Cable (Part-B4)

The touch cable connects RSB-4210 (CN1) with the touch connector of 7" LVDS LCD Module.

2.1.6 SQFlash SD Card (Part-C)

The SQFlash SD card is a standard SD device. It is the flash-based solid-state drive available and uses SLC NAND flash memory, making it ideal as an embedded SSD solution. It connects on SD1 of RSB-4210.

2.1.7 SATA Power Cable (Part-D)

The SATA power cable provides the power signal for SATA HDD by connecting RSB-4210 (CN16) and the SATA HDD.

2.1.8 SATA Cable (Part-E)

The SATA cable provides the control signal with SATA HDD by connecting RSB-4210 (SATA_CN1) with the SATA HDD.

2.1.9 Mini USB Host Cable (Part-F)

The mini USB Host cable connects RSB-4210 (USB_OTG1) with one USB client device. For example, USB mouse/keyboard.

2.1.10 Mini USB Client Cable (Part-G)

The mini USB Client cable connects RSB-4210 (USB_OTG1) with PC or NB.

2.1.11 USB Type-A Cable (Part-H)

The USB extend cable provide Type-A for USB device. For example, USB mouse/ keyboard.

2.1.12 Jumper (Part-I)

When plug-in the adapter with the wafer (CN17) shorted by this jumper, the system will power-on.

2.1.13 Null modem cable (Part-J)

The null modem cable connects RSB-4210 COM ports with a serial device.

2.1.14 19 V Power Adapter (Part-K)

The AC-to-DC power device provides a 19 V DC output (65 W max) with constant voltage sources (100 V \sim 240 V).

2.1.15 Power Cord (Part-L)

3P Power Cord (USA, Europe or UK standard) for 19 V Power Adapter AC input.

2.1.16 Speaker & Audio Cables (Part-M)

The cable connects with RSB-4210 (AUDIO1) and LINE-OUT, LINE-IN, MIC-IN and L&R Speakers.

2.1.17 Power Cable for Charger Board (Part-N1)

The cable provides the power for charger board. It connects RSB-4210 (BAT_CN1) with the charger board (CN2).

2.1.18 Signal Cable for Charger Board (Part-N2)

The cable provides the control signal for charger board. It connects RSB-4210 (BAT_CN2) with the charger board (CN1).

2.1.19 Charger Board (Part-N3)

The charger board provides 12v power to charge the battery when plug-in a 19v adapter, and RSB-4210 can read the battery status through this charger board.

te! It is necessary to use 19v adapter for charger board rather than 12v.

2.1.20 Battery (Part-N4)

The battery can provide the power with RSB-4210 without any adapter.

2.1.21 Keypad Cable (Part-O1)

The keypad cable connects RSB-4210 (KEYPAD1) with the keypad.

2.1.22 Keypad (Part-O2)

8*8 arrays of 64 normally open single-pole switches. (6*6 region of keypad are available when using RSB-4210.)

2.1.23 Cable for Suspend/Reset Button (Part-P)

The cable is used to extend the Suspend/Reset function by a specific button.

2.1.24 COM Port Cable (D-SUB 9P to Housing) (Part-Q)

The cable is used to extend COM port 9pin header from RSB-4210 to D-SUB 9P serial port connector.

2.1.25 RS-232 Loopback (Part-R)

The terminal connector 9P female is used to test RS-232 loopback function.

2.1.26 Terminal Block for CAN/RS-485 (Part-S)

The terminal block can be extended with extra two cables to connect RSB-4210 CAN/RS-485 function with the others CAN/RS-485 devices.

2.2 RSB-4210 Connectors

The following table shows the connector list of RSB-4210.

Connector	Description
CN 1	Wafer for 4-wire Resistive Type Touch Screen
CN 2	Phoenix Connector for CAN Bus
CN 3	Phoenix Connector for COM3, RS-485
CN 4	System Bus
CN 5	Pin Header for COM5, RS-232 (TX/RX/RTS/CTS)
CN 6	Pin Header for COM4, 3.3V TTL (TX/RX/RTS/CTS)
CN 7	Pin Header for I2S
CN 8	LVDS0 LCD Connector
CN 9	Pin Header for COM1, RS-232 (TX/RX)
CN 10	Pin Header for SD2
CN 11	Wafer for Backlight Power and Controller
CN 12	MiniPCIe Connector-Latch
CN 13	MiniPCIe Connector
CN 14	LVDS1 LCD Connector
CN 15	Pin Header for Jtag
CN 16	Wafer for SATA Power
CN 17	Wafer for Power ON/OFF
CN 18	Ethernet LAN1&2 Connector
CN 19	Wafer for Coin Battery
CN 20	SIM Card Slot
RST_BTN1	Pin Header for Reset
SUS_BTN1	Pin Header for Suspend
KEYPAD1	Pin Header for Matrix Keypad
CN21	Pin Header for I2C/SPI
GPIO1	Pin Header for 20x pins GPIO
SATA_CN1	SATA Connector
USB1	Pin Header for USB_HUB1
BAT_CN1	Wafer for Battery Charger Board – Power
BAT_CN2	Wafer for Battery Charger Board – Control Signal
USB_OTG1	USB OTG MINI-AB Connector
USB2	USB_HUB_2&3 (Standard Type-A)
CRT1	VGA Connector
HDMI_CN1	HDMI Connector
AUDIO1	Box Header for LINE-OUT, LINE-IN, MIC-IN and L&R Speakers
COM1	D-Sub9 Connector for COM2, RS-232 (TX/RX/RTS/CTS)
DCIN1	DC-IN Power Jack
SD1	SD Card Slot

2.2.1 Wafer for 4-wire Resistive Type Touch Screen (CN1)

The touch screen interface performs all sampling, averaging, ADC range checking, and control for a wide variety of analog resistive touch screens. This controller only interrupts the processor when a meaningful change occurs.

Figure 2.2 Wafer for 4-wire Resistive Type Touch Screen

Pin	Description	Pin	Description
1	Touch_Y-	2	Touch_Y+
3	Touch_X-	4	Touch_X+

2.2.2 Phoenix Connector for CAN Bus (CN2)

RSB-4210 supports one CAN bus, while CN2 is a phoenix connector for CAN bus.

For CAN applications, the two ends of the cable will have a termination resistor connected across the two wires. Without termination resistors, reflections of fast driver edges can cause multiple data edges that can cause data corruption. Please refer to Figure 2.4 and Figure 2.5 to add-ing a termination resistor (120 ohms) on your end device (R271 of RSB-4210, default is none) to avoid this situation.

Figure 2.3 Phoenix Connector for CAN Bus

Pin	Description	Pin	Description
1	CAN_D+	2	CAN_D-

Figure 2.5 Schematics of CAN on RSB-4210

2.2.3 Phoenix Connector for COM3, RS-485 (CN3)

RSB-4210 supports one RS-485 interface, while CN3 is a phoenix connector for RS-485.

Note!

For RS-485 applications, the two ends of the cable will have a termination resistor connected across the two wires. Without termination resistors, reflections of fast driver edges can cause multiple data edges that can cause data corruption. Please refer to Figure 2.7 and Figure 2.8 to adding a termination resistor (120 ohms) on your end device (R289 of RSB-4210, default is 120 ohms) to avoid this situation.

Figure 2.6 Phoenix Connector for COM3, RS-485

Pin	Description	Pin	Description
1	RS485_TXD-	2	RS485_TXD+

Figure 2.8 Schematics of RS-485 on RSB-4210

2.2.4 System Bus (CN4)

The RSB-4210 provides system bus via PCI104+ connector for extended device use. The pin assignments are shown below in Fig 2.9.

Figure 2.9 System Bus

Pin	Description	Pin	Description	Pin	Description	Pin	Description
A1	N/C	B1	GND	C1	N/C	D1	N/C
A2	GND	B2	N/C	C2	DIO_3V3	D2	DIO_3V3
A3	EX_GPIO_8	B3	IMX_GPIO4	C3	IMX_GPIO3	D3	IMX_GPIO2
A4	N/C	B4	N/C	C4	DIO_3V3	D4	DIO_3V3
A5	SysBus_A0	B5	SysBus_A1	C5	SysBus_A15	D5	SysBus_A14
A6	SysBus_A2	B6	SysBus_A3	C6	SysBus_A13	D6	SysBus_A12

A7	SysBus_A4	B7	SysBus_A5	C7	SysBus_A11	D7	SysBus_A10
A8	SysBus_A6	B8	SysBus_A7	C8	SysBus_A9	D8	SysBus_A8
A9	SysBus_A16	B9	SysBus_A17	C9	SysBus_A24	D9	N/C
A10	SysBus_A18	B10	SysBus_A19	C10	N/C	D10	SysBus_OE
A11	SysBus_A20	B11	SysBus_A21	C11	SysBus_RW	D11	GND
A12	SysBus_A22	B12	SysBus_A23	C12	N/C	D12	N/C
A13	DIO_3V3	B13	N/C	C13	SysBus_CS0	D13	SysBus_CS1
A14	SysBus_D0	B14	SysBus_D1	C14	SysBus_D15	D14	SysBus_D14
A15	SysBus_D2	B15	SysBus_D3	C15	SysBus_D13	D15	SysBus_D12
A16	SysBus_D4	B16	SysBus_D5	C16	SysBus_D11	D16	SysBus_D10
A17	SysBus_D6	B17	SysBus_D7	C17	SysBus_D9	D17	SysBus_D8
A18	N/C	B18	N/C	C18	N/C	D18	N/C
A19	N/C	B19	N/C	C19	N/C	D19	N/C
A20	N/C	B20	N/C	C20	N/C	D20	N/C
A21	N/C	B21	N/C	C21	N/C	D21	N/C
A22	N/C	B22	N/C	C22	SysBus_BCLK	D22	GND
A23	N/C	B23	N/C	C23	N/C	D23	GND
A24	N/C	B24	N/C	C24	SysBus_EB1	D24	DIO_3V3
A25	N/C	B25	N/C	C25	N/C	D25	DIO_3V3
A26	SysBus_nEB0	B26	N/C	C26	N/C	D26	N/C
A27	N/C	B27	SysBus_LBA	C27	5 V_EXT	D27	5V_EXT
A28	SysBus_WP	B28	N/C	C28	SysBus_Wait	D28	N/C
A29	N/C	B29	N/C	C29	N/C	D29	N/C
A30	SysBus_Wait	B30	N/C	C30	GND	D30	N/C

2.2.5 Pin Header for COM5, RS-232 (TX/RX/RTS/CTS) (CN5)

CN5 is a 4-wire (TX/RX/RTS/CTS) RS-232 port which provides connections between serial devices (For example, GPS, GSM and Bluetooth devices etc.) or a communication network.

Figure 2.10 Pin Header for COM5, RS-232 (TX/RX/RTS/CTS)

Pin	Description	Pin	Description
1	N/C	2	N/C
3	COM5_RXD	4	COM5_RTS
5	COM5_TXD	6	COM5_CTS
7	N/C	8	N/C
9	GND	10	N/C

2.2.6 Pin Header for COM4, 3.3V TTL (TX/RX/RTS/CTS) (CN6)

CN6 is a 4-wire (TX/RX/RTS/CTS) 3.3 V TTL signal which provides connections between serial devices (For example, GPS, GSM and Bluetooth devices etc.) or a communication network.

Figure 2.11 Pin Header for COM4, 3.3V TTL (TX/RX/RTS/CTS)

2.2.7 Pin Header for I2S (CN7)

RSB-4210 provides one I2S interface for users to expand their applications, and CN7 is the pin header for the I2S interface.

Figure 2.12 Pin Header for I2S

Pin	Description	Pin	Description
1	AUDIO_CLK	2	AUD3_TXD
3	AUD3_TXC	4	N/C
5	AUD3_TXFS	6	N/C
7	AUD3_RXD	8	N/C
9	GND	10	DIO_3V3

2.2.8 LVDS0 LCD Connector (CN8)

RSB-4210 supports dual LVDS LCD Interfaces (24+24 bit), in which CN8 is LVDS0 (24-bit) while CN14 is LVDS1 (24-bit). The pin assignment of LVDS0 (CN8) is shown as below.

Figure 2.13 LVDS0 LCD Connector

Pin	Description	Pin	Description
1	3.3 V	2	3.3 V
3	3.3 V	4	3.3 V
5	LVDS0_TX0-	6	LVDS0_TX0+
7	GND	8	LVDS0_TX1-
9	LVDS0_TX1+	10	GND
11	LVDS0_TX2-	12	LVDS0_TX2+
13	GND	14	LVDS0_CLK-
15	LVDS0_CLK+	16	GND
17	3.3 V	18	N/C
19	LVDS0_TX3-	20	LVDS0_TX3+

2.2.9 Pin Header for COM1, RS-232 (TX/RX) (CN9)

CN9 is a 2-wire (TX/RX) RS-232 port which provides connections between serial devices (For example, GPS, GSM and Bluetooth devices etc.) or a communication network.

Figure 2.14 Pin Header for COM1, RS-232 (TX/RX)

Pin	Description	Pin	Description
1	N/C	2	N/C
3	COM1_RXD	4	N/C
5	COM1_TXD	6	N/C
7	N/C	8	N/C
9	GND	10	N/C

2.2.10 Pin Header for SD2 (CN10)

The SD/MMC Slots are 3.3 V powered, which are able to be extended for SD slot module and SDIO interface module with the following features:

- Fully compatible with the MMC system specification version 3.2
- Compatible with the SD Memory Card specification 1.01, and SD I/O specification 1.1 with 1/4 channel(s)
- Block-based data transfer between MMC card and SDHC (stream mode not supported)
- 100 Mbps maximum data rate in 4-bit mode, SD bus clock up to 25MHz

Figure 2.15 Pin Header for SD2

Pin	Description	Pin	Description
1	GND	2	GND
3	SD4_DATA1	4	SD4_CLK
5	SD4_DATA0	6	SD4_CMD
7	SD4_DATA3	8	SD4_CD
9	SD4_DATA2	10	3V3
11	N/C	12	N/C

2.2.11 Wafer for Backlight Power and Controller (CN11)

This wafer provides DC +12 V, DC +5 V, back-light on/off control signal and 0 \sim 5 V PWM dimming control to inverter. We suggest users choose an inverter so that dimming control is by PWM to fit development kit design.

Figure 2.16 Wafer for Backlight Power and Controller

Pin	Description	Pin	Description
1	GND	2	GND
3	BLK_PWR_EN	4	BLK_PWR_EN
5	Brightness	6	PWM1
7	12 V	8	5 V

2.2.12 MiniPCle Connector-Latch (CN12) and Connector (CN13)

RSB-4210 supports a MiniPCIe Interface. The pin assignment is shown below.

Figure 2.17 MiniPCle Connector-Latch (CN12) and Connector (CN13)

2 4 6 8	DIO_3V3 N/C IO_1V5
4 6 8	N/C IO_1V5
6 8	IO_1V5
8	
	UIM_PWR
10	UIM_DATA
12	UIM_CLK
14	UIM_RESET
16	UIM_VPP
18	GND
20	N/C
22	nRESET_OUT
24	DIO_3V3
26	GND
28	IO_1V5
30	PCIe_SMBCLK
32	PCIe_SMBDAT
34	GND
36	USB_HUB4_D-
38	USB_HUB4_D+
	8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

39	N/C	40	GND
41	N/C	42	LED_WWAN
43	GND	44	LED_WLAN
45	N/C	46	LED_WPAN
47	N/C	48	IO_1V5
49	N/C	50	GND
51	N/C	52	DIO_3V3
53	N/C	54	N/C
55	GND	56	GND

2.2.13 LVDS1 LCD Connector (CN14)

RSB-4210 supports dual LVDS LCD Interfaces (24+24bit), in which CN8 is LVDS0 (24 bit) while CN14 is LVDS1 (24 bit). The pin assignment of LVDS1 (CN14) is shown below.

Figure 2.18 LVDS1 LCD Connector

Pin	Description	Pin	Description
1	5 V	2	5 V
3	5 V	4	5 V
5	LVDS1_TX0-	6	LVDS1_TX0+
7	GND	8	LVDS1_TX1-
9	LVDS1_TX1+	10	GND
11	LVDS1_TX2-	12	LVDS1_TX2+
13	GND	14	LVDS1_CLK-
15	LVDS1_CLK+	16	GND
17	N/C	18	N/C
19	LVDS1_TX3-	20	LVDS1_TX3+

2.2.14 Pin Header for Jtag (CN15)

RSB-4210 provides one Jtag interface for debugging CPU. CN15 is the pin header for Jtag interface.

Figure 2.19 Pin Header for Jtag

Pin	Description	Pin	Description
1	JTAG_TCK	2	GND
3	JTAG_TMS	4	GND
5	JTAG_TDO	6	GND
7	JTAG_TDI	8	IO_3V3
9	JTAG_TRST	10	N/C

2.2.15 Wafer for SATA power (CN16)

CN16 provides DC +5 V for SATA device. The pin assignment is shown as below.

Figure 2.20 Wafer for SATA power

Pin	Description	Pin	Description
1	SATA_5 V	2	GND
3	GND	4	N/C

2.2.16 Wafer for Power ON/OFF (CN17)

When plug-in the adapter with CN17 shorted by a jumper, the system will power-on. Or you can connect this wafer with an external button to control the power ON/OFF.

If your system cannot power-on with an adapter, please check this wafer in advance. There should be a jumper or external power switch on the wafer.

Figure 2.21 Pin Header for Power Button

Pin	Description	Pin	Description
1	PWR_BTN+	2	PWR_BTN-

2.2.17 Ethernet LAN1&2 Connector (CN18)

RSB-4210 supports dual LAN. One is extended from CPU module board directly and another is extended from system bus. Both of them support 10/100 Mbps transfer rates and are compliant with IEEE 802.3.

Note!

LAN connector with LED indicator: green LED indicates Ethernet active, while yellow LED indicates Ethernet speed 10/100.

Figure 2.22 Ethernet LAN1 & LAN2 Connector

2.2.18 Wafer for Coin Battery (CN19)

CN19 is used for a coin battery. The pin assignment is shown as below.

Figure 2.23 Wafer for Coin Battery

Pin	Description	Pin	Description
1	COIN_RTC	2	GND

2.2.19 SIM Card slot (CN20)

RSB-4210 provides a SIM card slot for MiniPCIe devices.

Figure 2.24 SIM Card slot

2.2.20 Pin Header for Reset (RST_BTN1)

RST_BTN1 is used for resetting the system. You can connect it with an external button for application. The pin assignment are shown below.

Figure 2.25 Pin Header for Reset

Pin	Description	Pin	Description
1	nRESET	2	GND

2.2.21 Pin Header for Suspend (SUS_BTN1)

SUS_BTN1 is used to making system entering into suspend mode or resume from suspend mode. You can connect it with an external button for applications. The pin assignment is shown as below.

Figure 2.26 Pin Header for Suspend

Pin	Description	Pin	Description
1	nSUSPEND	2	GND

2.2.22 Pin Header for Matrix Keypad (KEYPAD1)

The keypad circuitry scans a 6*6 array of 36 normal-open, single-pole switches. Any one or two keys depressed will be de-bounced and decoded. An interrupt is generated whenever a stable set of depressed keys is detected. The keypad interface:

- Provides scanning, de-bounce, and decoding for a 36-key switch array
- Scans a 6-row by 6-column matrix
- May decode 2 keys at once
- Generates an interrupt when a new stable key is determined
- Generates a 3-key reset interrupt as well

Figure 2.27 Pin Header for Matrix Keypad

Pin	Description	Pin	Description
1	KEY_COL2	2	KEY_ROW2
3	KEY_COL3	4	KEY_ROW3
5	KEY_COL4	6	KEY_ROW4
7	KEY_COL5	8	KEY_ROW5
9	KEY_COL6	10	KEY_ROW6
11	KEY_COL7	12	KEY_ROW7

2.2.23 Pin Header for I2C/SPI (CN21)

RSB-4210 provides two I2C and one SPI interface with user to expand their applications. CN21 is the pin header for I2C/SPI interface. The pin assignment is shown as below.

Figure 2.28 Pin Header for I2C/SPI

Pin	Description	Pin	Description
1	GND	2	SPI_IRQ
3	I2C1_SCL	4	SPI_MISO
5	I2C1_SDA	6	SPI_MOSI
7	I2C3_SCL	8	SPI_CS0
9	I2C3_SDA	10	SPI_CLK
11	DIO_3V3	12	DIO_3V3

2.2.24 Pin Header for 20x pins GPIO (GPIO1)

GPIO1 is extended for 20x pins 3.3V TTL Level GPIO. GPIO1~4 pins are coming from CPU directly while GPIO5~20 pins are extended from IC PCA9555. The pin assignment is shown as below.

Figure 2.29 Pin Header for GPIO

Description	Pin	Description
GND	2	DIO_3V3
IMX_GPIO1	4	IMX_GPIO2
IMX_GPIO3	6	IMX_GPIO4
EX_GPIO_5	8	EX_GPIO_6
EX_GPIO_7	10	EX_GPIO_8
EX_GPIO_9	12	EX_GPIO_10
EX_GPIO_11	14	EX_GPIO_12
EX_GPIO_13	16	EX_GPIO_14
EX_GPIO_15	18	EX_GPIO_16
EX_GPIO_17	20	EX_GPIO_18
EX_GPIO_19	22	EX_GPIO_20
	Description GND IMX_GPIO1 IMX_GPIO3 EX_GPIO_5 EX_GPIO_7 EX_GPIO_9 EX_GPIO_11 EX_GPIO_13 EX_GPIO_15 EX_GPIO_19	Description Pin GND 2 IMX_GPIO1 4 IMX_GPIO3 6 EX_GPIO_5 8 EX_GPIO_7 10 EX_GPIO_9 12 EX_GPIO_11 14 EX_GPIO_15 18 EX_GPIO_19 20 EX_GPIO_19 22

2.2.25 SATA Connector (SATA_CN1)

RSB-4210 supports one SATA Interface thru SATA_CN1. (Both SATA DOM and SATA HDD support.) The pin assignment is shown in Fig 2.30 below.

Figure 2.30 SATA Connector

Pin	Description	Pin	Description
1	GND	2	SATA_TX+
3	SATA_TX-	4	GND
5	SATA_RX-	6	SATA_RX+
7	GND		

2.2.26 Pin Header for USB_HUB1 (USB1)

The USB port is extended from USB_HUB1. The pin assignment is shown below.

Figure 2.31 Pin Header for USB_HUB1

Pin	Description	Pin	Description
1	5V	2	CSB_HUB1_Data -
3	CSB_HUB1_Data +	4	GND
5	GND (Chassis Ground)		
2.2.27 Wafer for Battery Charger Board - Power (BAT_CN1)

BAT_CN1 provides the power with battery charger board. +VIN_ADP is the voltage from adapter to battery charge board; +VIN is the voltage from battery charge board to RSB-4210. The pin assignment is shown below.

Figure 2.32 Wafer for Battery Charger Board - Power

Pin	Description	Pin	Description
1	+VIN_ADP (For Battery)	2	+VIN_ADP (For Battery)
3	GND	4	GND
5	+VIN (For RSB-4210)	6	+VIN (For RSB-4210)

2.2.28 Wafer for Battery Charger Board -Control Signal (BAT_CN2)

BAT_CN2 provides the I2C control signal with battery charger board. The pin assignment is shown below.

Figure 2.33 Wafer for Battery Charger Board - Control Signal

Pin	Description	Pin	Description
1	3.3 V_STB	2	GND
3	I2C3_SCL_BAT	4	N/C
5	I2C3_SDA_BAT	6	N/C
7	Charger_board_IN#	8	N/C

2.2.29 USB OTG MINI-AB Connector (USB_OTG1)

The RSB-4210 has a single USB OTG mini-AB port which can be used as a USB client to link with PC or a USB host device. For USB client applications, users could upload or download files to any folder in Windows CE and create a synchronous folder between PC and RSB-4210 thru this connector. For USB host applications, users can connect with USB devices, for example, USB mouse and USB keypad.

Figure 2.34 USB OTG MINI-AB Connector

Pin	Description	Pin	Description
1	5V	2	Data -
3	Data +	4	USBOTG_ID
5	GND		

2.2.30 USB HUB_2&3 (Standard Type-A) (USB2)

The USB interface provides full speed serial communications ports, which includes the following features:

- Compliance with the USB 2.0 specification
- Transceiver buffers integrated, over-current protection on ports
- Supports power management
- Operates as a master on the bus

Figure 2.35 USB CSB_HUB_2&3 (Standard Type-A)

2.2.31 VGA Connector (CRT1)

RSB-4210 supports a standard VGA Interface (D-SUB15). The pin assignment is shown below.

Pin	Description	Pin	Description
1	CRT_R	2	CRT_G
3	CRT_B	4	N/C
5	GND	6	GND
7	GND	8	GND
9	+5 V	10	GND
11	N/C	12	DDC_SD_CRT
13	HSYNC	14	VSYNC
15	DDC_SC_CRT		

Figure 2.36 VGA Connector (D-SUB15)

2.2.32 HDMI Connector (HDMI_CN1)

RSB-4210 supports a standard HDMI Interface. The pin assignment is shown below.

Figure 2.37 HDMI Connector

Pin	Description	Pin	Description
1	HDMI_TD2+	2	GND
3	HDMI_TD2-	4	HDMI_TD1+
5	GND	6	HDMI_TD1-
7	HDMI_TD0+	8	GND
9	HDMI_TD0-	10	HDMI_CLK+
11	GND	12	HDMI_CLK-
13	HDMI_CEC	14	HDMI_Reserved
15	DDC_SC_HD	16	DDC_SD_HD
17	GND	18	+5V_HDMI
19	HPD		

2.2.33 Box Header for LINE-OUT, LINE-IN, MIC-IN and L&R Speakers (AUDIO1)

The box header is used for audio input / output signal port, and the speaker-out uses a 2W amplifier. The pin assignment is shown below.

Figure 2.38 Box Header for LINE-OUT, LINE-IN, MIC-IN and L&R Speakers

Pin	Description	Pin	Description
1	LINE_OUT_R	2	SPK_R-
3	LINE_OUT_L	4	SPK_L-
5	SPK_R+	6	SPK_L+
7	N/C	8	AGND
9	LINE_IN_R	10	LINE_IN_L
11	N/C	12	AGND
13	N/C	14	N/C
15	MIC_IN	16	AGND

2.2.34 D-Sub9 Connector for COM2, RS-232 (TX/RX/RTS/ CTS) (COM1)

COM1 port supports RS-232 (TX/RX/RTS/CTS). The pin assignment is shown below.

Figure 2.39 D-Sub9 Connector for COM2, RS-232 (TX/RX/RTS/CTS)

1	N/C	2	COM2_RXD
3	COM2_TXD	4	N/C
5	GND	6	N/C
7	COM2_RTS	8	COM2_CTS
9	N/C		

2.2.35 DC-IN Power Jack(DCIN1)

The DC-in power jack DCIN1 provides the power with RSB-4210 (+9 ~ 24 V).

Figure 2.40 DC-IN Power Jack

2.2.36 SD Card Slot (SD1)

The SD card Slot (SD1) is powered with 3.3 V, which includes the following features:

- Fully compatible with the MMC system specification version 3.2
- Compatible with the SD Memory Card specification 1.01, and SD I/O specification 1.1 with 1/4 channel (s)
- Block-based data transfer between MMC card and SDHC (stream mode not supported)
- 100 Mbps maximum data rate in 4-bit mode, SD bus clock up to 25 MHz

Figure 2.41 SD card Slot

2.3 Mechanical

2.3.1 Connector Location

Figure 2.42 RSB-4210 Connector Position (Top)

Figure 2.43 RSB-4210 Connector Position (Bottom)

2.3.2 RSB-4210 Board Dimension

Figure 2.44 RSB-4210 Board Dimension

RSB-4210 User Manual

Software Functionality

This chapter details the Linux operating system on RSB-4210 platform.

The RSB-4210 platform is one embedded system with Windows Embedded Compact 7 (WinEC7). The WinEC7 architecture is a variation of the Windows operating system for minimalistic computers and embedded systems. The preconfigured kernel is allowed to write applications without creating own operating system kernels. It offers the possibility to reduce the time to market phase. The purpose of this chapter is to introduce you how to boot up WinEC7 and some basic utilities on RSB-4210 platform.

3.1 The Bootloader

The main task of the bootloader is to download a WINCE-Image to the platform and starting WinCE on it. The bootloader can be services to achieve this work through a terminal running on a host PC. To do so, the host PC has to be connected to the serial port (UART Port 1) at the platform. There are two kinds of bootloader for RSB-4210 WinEC7. One is uboot, and another one is eboot. However, now uboot is the default bootloader for RSB-4210 WinEC7, eboot is an option bootloader if you want to use Ethernet KITL at WinEC7 environment.

3.1.1 Communication settings

Please set the host PC's serial port communication and connect to target platform. A standard serial cable can be used to connect between UART port on the target platform and the development host PC. Any terminal emulation application can be used to display messages sent from the serial port of the target. Configure the terminal application with the following communications parameters:

115200 bps
8
1
none
none

3.1.2 Startup of the bootloader

You can put bootloader (default is uboot) in your favorite boot device including on board flash (iNand), SD Card, or SATA device. Power on platform will let bootloader startup, you can press "Enter" to get into uboot command mode as shown in below figure.

```
Net: got MAC address from IIM: 00:00:00:00:00:00
FECO [PRIME]
Hit any key to stop autoboot: 0
SOM-CMX53 U-Boot > _
```

3.1.3 Change Display Output Resolution

RSB-4210 has a build-in CH7033B HDTV/VGA/DVI Encoder. With its advanced video encoder and flexible scaling engine, the CH7033B satisfies manufactures' products display requirements. There are 44 display panel types and auto mode can be chosen as default in RSB-4210. To set default display panel type, just enter uboot command mode and type below commands:

ch7033cfg set (setting value) : set display panel type

ch7033cfg get : get setting value

reset: reset platform

Example:

```
Hit any key to stop autoboot: 0

SOM-CMX53 U-Boot > ch7033cfg set 2

SOM-CMX53 U-Boot > ch7033cfg get

Current Setting:2

2 - 1080P60 - HDMI 16 1920 x 1080 p 60Hz 148500KHz

SOM-CMX53 U-Boot > reset_
```

Below is 44 display panel types list table.

Value	Name	Value	Name	Value	Name
0	WUXGA60	15	1440x900RDC	30	720P60
1	UXGA60	16	1440x900P60	31	720P50
2	1080P60	17	WXGA75	32	WSVGA60
3	1080P50	18	WXGA60	33	WSVGA_YING
4	1080160	19	1366x768P60	34	SVGA85
5	1080 50	20	1366x768CTM	35	SVGA75
6	WSXGA+60	21	1360x768P60	36	SVGA60
7	SXGA+75	22	1280x768P75	37	PAL-TV
8	SXGA+60	23	1280x768RDC	38	NTSC-TV
9	SXGA85	24	1280x768VESA	39	VGA85
10	SXGA75	25	1280x768TV	40	VGA75
11	SXGA60	26	XGA85	41	VGA72
12	SXGA50	27	XGA75	42	VGA60
13	1280x960P60	28	XGA70	43	720x400P85
14	1440x900P75	29	XGA60	44	640x400P85
255	auto mode				

Note!

Auto mode: 1280x720 HDMI/1024x768 VGA output, and LVDS output 1280x720 resolution.

3.2 WinEC7 Startup Procedure

Windows CE image can be loaded from three devices including SD storage card, onboard flash chip, and SATA. There is only one device will be the default booting device. There are two major files that you need to boot WinEC7: u-boot.bin and NK.nb0. During boot up phase, u-boot will copy WinEC7 image (NK.nb0) to DRAM and launch it from DRAM from same bootup device. This chapter will introduce you to how to bootup WinEC7 on RSB-4210 from SD/MMC, on board flash, or SATA device.

Directory	Files	Note			
01_First_WinCE _Boot_No_Hive	u-boot.bin ulogo.bmp NK_VGA_20120621_noHive.nb0	Platform might default be linux. Need to format on board flash to support Hive Based WinEC7			
02_WinCE_Hive	u-boot.bin NK.nb0	The latest WinEC7 image and corre- sponding uboot			
03_Cfimager	cfimager.exe flashSD.bat eboot.nb0 NK.nb0 NK_VGA_20120621_noHive.nb0 u-boot.bin	Freescale Flash tool to support eboot and KITL function.			
04_Others		Other backup files			
iMX53_WinEC7_NewArch_bootup_SOP: i.MX53 WinEC7 bootup SOP					

Required Files (Please refer to released Software package):

Note!

The u-boot in different folder has different functionality, do not use uboot.bin in 01_First_WinCE_Boot_No_Hive folder to boot image in 02_WinCE_Hive folder, vice versa.

3.2.1 WinEC7 Bootup Steps

Please follow bellow steps to boot WinEC7.

- 1) Platform might default be Linux. Need to format on board flash to support Hive Based WinEC7.
- Insert a boot SD Card to your host pc, and format it to FAT32 Files System.

親生(1) 😼 我	的電腦	格式化卸除式磁碟 (H:)	? ×
名 本 規 本	() 教禄後 (D-) ()) 國智(O) 檔案總管(J) (時日本)	容量(P): 3.73 GB 檔案系統(P) FAT32	•
 DVD 光碟後 本線磁碟 (I New Group 	共用和安全性(E)	配置单位大小(A) 預設配置大小	•
SAP_trainin, rise 於 172. hbchen 於 1 Public 於 ac huangbin 於	 加到壓縮縮(点) 加到 "Archive rar"(1) 壓縮並發郵件 壓縮成 "Archive rar"並發郵件 Groove Folder Synchronization 	磁碟區標籤(L) FORMAT-MX53 格式選項(Q)	
	格式化(山)	■ 啓用陸縮(E) ■ 建立一個 MS-DOS 開港磁片の0	
	第下(1) 複製(2) 粘上(2)		-
4	建立建造©) 重新命名(M)	見た(の) 同時に	n
	内容图		

Copy 3 files: u-boot.bin, ulogo.bmp, and NK_VGA_20120621_noHive.nb0 from directory 01_First_WinCE_Boot_No_Hive to your boot SD Card.

網址(D)	❤ H∆
🗟 NK_V	GA_20120621_noHive.nb0] .bin
🔤 ulogo.	bmp

- Open the Hyperterminal or your telnet program at your working PC.
- Setting serial port

gort:	COMI	OK
laud rate:	115200 -	
)ata:	8 bit 💌	Cancel
grity:	none 💌	
itop:	1 bit 💌	Help
Jow control:	none	
Transmit dela	N.	

- Insert this bootup SD Card to i.MX53 platform and power on platform.
- Enter uboot command mode. Set uboot variables >>setenv bootos 'win'; saveenv;
- Restart platform, then you can see uboot logo and WinEC7 bootup.

2) Format On Board Flash

Choose the control panel

 Choose MMC Card (OnBoardFlash), and create a new partition. Select properties

Dismount -> Format -> Mount

Storage Properties ? OK ×	Storage Properties ? OK ×	Format	×
Storage Manager	Storage Manager	Partition Size 1919.5 MB	
Partition Properties ? OK 🗙	Partition Properties ? OK ×	FAT Version FAT32	
Name Part00 Size 3931137 Sectors Type 0x08 File System exfat.dli Flags 0x00000010 Mount Dismount Format Scan Deftag	Name Part00 Size 3931137 Sectors Type 0x08 File System exfat.dl Flags 0x00000000 Mount Dismount Format Scan Defrag	Root Entries 512 Cluster Size (KB) 4.0 TFAT Quick Format Start Cancel	

You can see MMCMemory device on your platform

Eile Edit	<u>V</u> iew <u>G</u> o	2								? >
		III •			77					ac-anas
	9	Ś	D	D	2		D	D	P	
Application Data	Hard Disk	MMCMemory	My Documents	My Recent Documents	Network	Program Files	Temp	Windows	Control Panel	

Now, you can use Hive-based WinEC7 image.

If you want to bootup WinEC7 without logo, remove ulogo.bmp from your boot device.

3) Boot Hive-based WinEC7 image

Copy u-boot.bin and nk.nb0 from 02_WinCE_Hive to your bootup SD Card.
 Restart platform, then you can see uboot logo and WinEC7 bootup.

- 4) If you want to use KITL function. You need to use Freescale flash tool to flash bootup SD Card.
- Check your SD Slot symbol.

Change folder to 03_Cfimager. Edit the flashSD.bat. Modify the SDdevice = "your SD slot symbol"

- Excute the flashSD.bat
- User can see the below window. And please press any key to continue

- The SD card will be formatted. Press any key to continue.
- Please check if the "u-boot.bin", "NK.nb0", and "NK_VGA_20120621_noHive.nb0" had been copied to your SD card successfully.
- Now you can use this bootup SD card to try KITL function.
- For more detail about KITL usage, please contact Advantech RISC Team.

3.2.2 Booting form On Board Flash or SATA

If you can boot WinEC7 from SD/MMC device, you can try to boot WinEC7 on board flash or SATA. Before you using these devices, remember to format it to FAT32 files system. Just copy u-boot.bin and NK.nb0 to on board flash or SATA and restart platform to achieve this task. SD/MMC is the highest priority boot device. On board flash is the lowest priority boot device.

3.3 Utilities

There are several useful utilities added in the released WinEC7 image.

3.3.1 Test Utility

The utility "Auto.exe" is an integrated test tool, which includes function validation for peripherals. You can use this tool to verify whether the peripheral function is working or not. Just copy this utility to storage device and then launch from WinCE by double clicking it. Please contact Adavantech FAEs to get this tool.

You should see a lot of test items in left window after launching this utility "Auto.exe". You can insert enough test items you want into the right window by pressing the ">>" button. The test items in right window will be executed. Also, you can remove test items from right window by clicking the "<<" button. After you've added the test items, you can go to function testing by pressing the "RUN ALL" button. By pressing the "Report" button, you will see the test results.

Figure 3.1 Test Utility

3.3.2 Startup Execution

The RSB-4210 platform has a useful function called "Startup execution". After the system boot up, the startup execution function would automatically perform. This function is useful for controlling the system to do the initialization processes or some other procedures. In RSB-4210 platform, follow below method to perform the "Startup" function.

Method:

Step 1. Create a folder named "Startup" in a storage media (onboard flash or SD storage card).

Step 2. Copy executable files to "Startup" folder that is created by Step 1.

Example:

Copy executable files "AdvRebootCounter.exe" in "\SD Memory\Startup", and then reboot the system. After the system boots up, the executable files would automatically execute.

3.3.3 Platform Setting

The Platform Setting utility is an outstanding utility designed by Advantech Windows® CE software team. It is an integrated environment where users can get useful system information as well as configure favorite system settings and apply system control functions on demand. The Platform Setting icon is on the desktop. The following sections illustrate the functions of Platform Setting.

3.3.3.1 General

'General' page shows the memory information including DRAM and iNAND. Platform name and System Software version are also in here.

Advantech Platform	Setting		(Ж	×		
General Display Wa	tchdog Audio	Miscellaneous]				
_F Platform Information				7			
Name: ROM-1210							
-Memory Size							
initianity bize	Total	In Use	Free				
DRAM (KB)	449452	139464	309988				
iNAND (KB)	1909076	443884	1465192				
_[System Software —				-			
Windows CE 7	0.00.0001	2011	/11/15				
Boot Loader	0.0.0001	2011	/11/15				
Platform Setting	6.14.0307	2011	/04/15				
OK Cancel Apply							

Figure 3.2 General Information

3.3.3.2 **Display**

From time to time it is unnecessary to turn on the display attached to the RSB-4210 all day long. The Display page provides several frequently used functions such as turning off the LCD and backlight to elongate the display repair period, adjusting brightness. Furthermore, users can click the "Turn Off" button to turn off the backlight of the display panel immediately without waiting. Once the backlight is off, there are three inputs to turn it on: (1) mouse; (2) keyboard; (3) touch-screen; users can use any one of them to turn on the display. The lower "Brightness" block has scroll bars by which users can fine tune the brightness levels of the LCD. You can also change resolution by selecting VGA group check button. However, this feature is only for Hive-based image and you need to restart platform to change resolution. To customize your own resolution, you need get Binary BSP from Advantech FAEs. The default custom resolution is 800x600 now.

Advantech Platform Setting OK 🗙
General Display Watchdog Audio Miscellaneous
rBacklight
Turn On Turn Off
Brightness Contrast
min max min max
ſ ^{VGA}
NOTE: Change screen resolution need to restart system.
○ 800x480 ○ 1280x720 Custom
NOTE: Only For Hive Image !!
OK Cancel Apply

Figure 3.3 Display Configuration

3.3.3.3 WatchDog Timer

It is important in industrial applications that control systems rarely crash, or are capable of self-resetting if they hang or stop functioning. The Watchdog function for automatic system resetting is therefore provided in RSB-4210. There is a timer inside the watchdog function. User's AP could invoke the associated APIs in the Watchdog function to start the timer, then the Watchdog function would repeat the countdown of the specified period of time to reboot the system if the user's AP does not clear the timer in time periodically. The Watchdog function in the RSB-4210 provides eight different time intervals: 1 second, 5 seconds, 10 seconds, 15 seconds, 20 second, 25 seconds, and 30 seconds. The "Enable" button is used to start the Watchdog function. Pressing the "Sleep" button will cause the system into suspend mode. Pressing the "ReBoot" button will cause the system to cold boot.

Advantech Platform Setting OK >
General Display Watchdog Audio Miscellaneous
Watchdog Timer
Time Period : 5 seconds Enable
Time Delay : 5 seconds 🔽 Triggle
Elapse Time : 00:00:00
Power Management
Economize Sleep ReBoot
OK Cancel Apply

Figure 3.4 Watchdog Timer

3.3.3.4 Audio

User can adjust the playback and record volume here. And the input of record also can adjust here.

Advantech Platform Setting OK						
General Display Watchdog Audio Miscellaneous						
Playback						
Speaker / Line Out						
O Mute						
Record	_					
Microphone						
O Line In						
O Mute						
Speaker ON Speaker OFF						
OK Cancel A	\pply					

Figure 3.5 Audio Settings

Chapter 3 Software Functionality

3.3.3.5 Miscellaneous

The Misc page provides several functions as described below. The "Registry" block provides registry save and registry clean functions. Pressing the "Save" button, the registry settings will be saved to persistent storage as on-board flash. Pressing "Clean" button, the registry setting will return to default settings. The "Start Service" button invokes ActiveSync to the host computer. The "Ethernet Information" block shows the network MAC address. The Memory Management block will check if memory size needs to be allocated automatically during boot. Once this is checked, program memory will be allocated half, and storage memory will occupy the rest.

Advantech Platform Setting	OK ×
General Display Watchdog Audio Miscellaneous	
Registry ActiveSync Save Clean Memory Management Start Service Allocate Memory Size Automatically.	
Ethernet Information eth0 MAC : 22 11 22 11 22 11 eth1 MAC : 22 11 22 11 22 12	
Touch Panel Calibrate	
OK Cancel	Apply

Figure 3.6 Miscellaneous Settings

3.4 Network

RSB-4210 has two builds in 10/100Base-T Ethernet controller. It appears at "Control Panel/Network and Dial-up Connections". User can configure its Ethernet support as follows:

- 1. Click "Start/Settings/Control Panel".
- 2. Double click "Network and Dial-up Connections".
- 3. If the RSB-4210 is a node of the LAN with DHCP servers, it is now available.

3.9.3. If the RSB-4210 is a node of the LAN with fixed IP, the user has to consult with MIS to get specific IP addresses. Then fill them into the associated fields of the Properties Dialog, then press the registry save button to save this changed registry. Reboot the system, and the Ethernet functions would be available as the previous configuration.

Eile Edit View Advagced	? ×
Make New [AX88796C1] FEC1 Connection	
🐉 🔍 Network Connections	🌐 🍤 12:31 AM 🊔 🗟

Figure 3.7 Networking via Ethernet

3.5 **BSP Carried Tools**

The Freescale board support package (BSP) is based on the Microsoft Windows Embedded Compact 7 operating system. It has some build-in tools to verify WinEC7 functionality and BSP's drivers. This section will introduce these tools.

3.5.1 Display and Video Testing Tools

The Windows Embedded Compact 7 BSP display driver is based on the Microsoft DirectDraw Graphics Primitive Engine (DDGPE) classes and supports the Microsoft DirectDraw interface. This driver combines the functionality of a standard LCD display with DirectDraw support.

3.5.1.1 Using The Display Driver Control Panel Application

A control panel application provides access to additional display driver functionality. Look for the icon shown in Figure 3.8 in Windows CE control panel.

The control panel application supports the following display driver features:

- Rotation between 0°, 90°, 180°, and 270°.
- Gamma correction configuration for a synchronous display device, The gamma value may be set between 0.5 and 3.5. The default gamma value is 1.0.
- Display mode configuration with a drop-down box listing all of the display modes supported by the display driver. Each display mode is listed as a combination of the mode width, height, and frequency. For example, 800×480@60Hz represents the WVGA panel LCD mode, and 720×480@50Hz represents NTSC TV mode. The resolution of the current mode is displayed in the box. However, you can't change resolution when kernel running. This application is located under \Startup\Settings\Control Panel\Freescale display driver.

FSL Display	Driver	OK ×
Settings		
Rotation:	ØØ	
90 O	FSL	O 270
	O 180	
Gamma:	(0.5~3.5)	1.0
Current re	solution: 4	80x640
Mode:	480	x640@60 💌
Apply		
Apply		

Figure 3.8 Display Driver GUI

3.5.1.2 Running the PlayWnd tests

For PlayWnd testing, there are no build steps required. playwnd.exe always is included in the image. This sample is an interactive audio/video media file player. It uses DirectShow to play any supported audio or video media file (MPG, AVI, QT, WAV, AU, SND, MID, etc.). The video will appear in a window on the screen, and you can use a mouse to move the window. If the media has a video component, PlayWnd will read the video's default size and adjust the player's client area to allow the video to play at its exact default size (taking into account the size of caption bar & borders). When the media file is playing, the menu bar will disappear, giving you keyboard control with 'P' and 'S' for pause/play and stop/reset. This application is located under \Windows\ PlayWnd.exe.

3.5.2 AudioRouting

If both the SGTL5000 stereo audio driver and the SPDIF driver occur, the default audio device may be SGTL5000. The default audio device can be chosen by the AudioRouting application. Now SGTL5000 support input and output, and SPDIF only support output. This application is located under \Windows\ AudioRouting.exe.

<u>File E</u> dit	View Go]								? ×
		≣ •	C 2	0	~	2	0	C 24	0	_
ActiveSync	Desktop	EventLog	Favorites	Fonts	Help	Keys	Profiles	Programs	StartUp	
P	AudioRot	uting		×			m			
System	Playt	back Device:		latfo	AudioRou	ceconfig	cerdisp2	cube	etcha	
	Aud	io Output	•			•	_			
etcha	Reco	order Device:		iger	triangle	USBOPL	USBSet			
	paus	io nipor	-							
	A	oply	Close	8						
	-									
💦 AudioRou	iting								> 12:43 AM	- 🚔 🔁

3.5.3 Graphics Processing Unit Testing Tools

The Graphics Processing Unit (GPU) is a graphics accelerator targeting embedded 2D/3D graphics applications. The GPU3D (3D graphics processing unit) is based on the AMD Z430 core, which is an embedded engine capable of DirectX9 Shader Model 3.0+ program execution and accelerates user level graphics APIs such as OpenGL ES 1.1 and 2.0.. The GPU2D (2D graphics processing unit) is based on the AMD Z160 core, which is an embedded 2D and vector graphics accelerator targeting the OpenVG 1.1 graphics API and feature set The GPU driver is delivered only as binary code.

3.5.3.1 Tiger Test

This test application verifies the basic functionality of OpengVG 1.1. It is included into the release image and is located under \Windows\tiger.exe. Click to launch this test and a rotating tiger appears on the screen as shown in follow figure.

Figure 3.9 Tiger Test

3.5.3.2 Cube Test

This test application verifies the basic functionality of OpengGL ES 1.1. It is included in the release image and is located under \Windows\cube.exe. Click to launch this test and a rotating cube appears on the screen as shown in follow figure. Press ESC to exit this application.

Figure 3.10 Cube Test

3.5.3.3 Triangle Test

This test application verifies the basic functionality of OpengGL ES 2.0. It is included in the release image and is located under \Windows\triangle.exe. Click to launch this test and a triangle appears on the screen as shown in follow figure. Press ESC to exit this application.

Figure 3.11 Triangle Test

3.5.4 Application Tool for USB Device Class Select

There are three types of USB device classes: ActiveSync, MSC and RNDIS. An application with a GUI is provided to switch between the three classes. Figure X shows the tool to switch the USB device class. Make sure the OTG port is operating under the USB device mode (by connecting the mini-B connector of the USB OTG cable to the OTG port in the board) before pressing the Apply button to switch USB device class.

FSL USB Utility	ок 🗙
TEST Mode USB Device Class Select	
USB Device Class Select:	
ActiveSync	
O MSC	
Apply	

Figure 3.12 USB Device Class Switch User Interface

3.6 Binary BSP introduction

The purpose of this section is to show you how to use Advantech WinCE Binary BSP to develop your WinCE system for i.MX53 series platform. Before you begin this document's step, you need to check a development environment listed as below:

- 1. PC development environment.
- Visual Studio 2008
- Windows Embedded Compact 7
- 2. SD Card.
- 3. Released BSP package contains following files:
- ADV_RSB_4210.pbxml (or ADV_ROM_1210.pbxml): WinCE OSDesing Project file.
- ADV_RSB_4210(or ADV_ROM_1210): BSP Binary Package.
- RSB_4210xx_x_(date)_S: Image and bootup package
- **uboot_logo_(date):** uboot source code and programming guide package.
- 4. A RSB-4210 Platform.

3.6.1 Build WinEC7 OS Image

- 1. Assume default WinCE path is "C:\WINCE700".
- Copy ADV_RSB_4210 (or ADV_ROM_1210) to "C:\WINCE700\PLATFORM", for example

- 3. Place **ADV_ROM_1210**.pbxml to OSDesigns\[create a sub-folder]\ , for example: C:\WINCE700\osdesigns\ADV_ROM_1210\ ADV_ROM_1210.pbxml
- 4. Double Click "ADV_ROM_1210.pbxml". Start a VS2008 WinCE Platform Builder. It will create OSDesigns files.
- Select Build -> Configuration Manager from your Visual Studio 2008 menu bar. Choose "Freescale i_MX53 SMD ARMV7 Release"

💏 AD i	_ROM	_1210 -	Microsoft	Visual S	tudio						
<u>F</u> ile	<u>E</u> dit	<u>V</u> iew	<u>P</u> roject	<u>B</u> uild	<u>D</u> ebug	Target	<u>T</u> ools	Test	<u>W</u> indow	<u>H</u> elp	
- 📑	-	📔 🖢		X 🗈	B 9	- (°I -	J - I	4 ▶	Freescale	i_MX -	Platform Builder (_TGTCPU
i 🧊 I)evice:	(auto) E	ther				D	e	Freescale Freescale	i_MX53 i_MX53	SMD ARMV7 Checked SMD ARMV7 Debug
Solution	n Explo	rer - Sob	ution 'AD'	V_ROM	_1210' (1 p	ою – Ф	×		Freescale Configur	tion Ma	SMD ARMV7 Release nager

- Make Run-Time Image: Select Build -> Build Solution from your Visual Studio 2008 menu bar. Never Rebuild, or Clean solution !!
- The WinEC7 image will be placed at "C:\WINCE700\osdesigns\ADV_ROM_1210\Rel-Dir\Freescale_i_MX53_SMD_ARMV7_Release"

3.6.2 Windows CE Startup Procedure

Please refer to Section 3.2. Copy the compiled NK.nb0 image to your boot device. Follow Section 3.2 to boot up your platform.

3.6.3 U-boot development

Please refer to RSB-4210 Linux Eva-kit user manual and winec7-uboot-programingguide_(date) to develop u-boot if you want to customize it.

3.7 SDK introduction

The purpose of this document is to introduce the method of remote debug a Visual C++ program of Windows Embedded Compact 7 (Windows EC7) Smart Device by using Activesync utility connection. Before you begin this document's step, you need to setup a development environment listed as below:

- 1. **Visual Studio 2008 development environment on your Desktop PC.** (Visual Studio 2008 SP1)
- 2. Install target device SDK (For example, ROM-1210.msi for RSB-4210 platform)
- 3. Windows Embedded Compact 7.0 device.

3.7.1 Create a new Windows EC 7 project

- 1. Select File -> New -> Project... from your Visual Studio 2008 menu bar.
- 2. Select Project Types: **Smart Device** of Visual C++.
- 3. Select Visual Studio Installed Templates: **MFC Smart Device Application**.
- 4. Type "Project Name"
- 5. Select Target platform SDK: ROM-1210.
- 6. Base on your application to choice Application Type, EX:"Dialog Based".

lew Project			<u>?×</u>	
Project types:		Iemplates:	NET Framework 3.5	
Visual C++ ATL CLR General MFC Smart De Test Win32	evice	Visual Studio installed templates ATL Smart Device Project MPC Smart Device Application Silverlight for Windows Embedded My Templates	MFC Smart Device ActiveX Control MFC Smart Device DLL Win32 Smart Device Project	
Other Project Platform Bui Test Projects	ages t Types lder	Search Online Templates		
An application fo Name:	r Windows Mobile	and other Windows CE-based devices that uses the l	Microsoft Foundation Class Library	
Location:	C:\Documents and Settings\huangbin.chen\My Documents\Wisual Studio 2008\Projects			
Solution Name:	Test	Cres	ate directory for solution	
			OK Cancel	

(FC Smart Device Application Wize	rd - Test	? ×
Overview Platforms Application Type Document Template Strings User Interface Features Advanced Features Generated Classes	Select platform SDKs to be added to the current project. Installed SDKs: Windows Mobile 5.0 Pocket PC SE Pocket PC 2003 Smartphone 2003 Windows Mobile 5.0 Smartphone Platform Builder Selected SDKs: ROM-1210-0 Selected SDKs: ROM-1210-0 Selected SDKs: ROM-1210-0 Selected SDKs: ROM-1210-0 Selected SDKs: Selected SDKs: ROM-1210-0 Selected SDKs: Selected SDKs: Selected	
	ROM-1210-0 Instruction sets: ARMv4I < Previous	

Wizard - Test		? 🛛
on Type		
Application type: ③ gingle document ④ Dialog based ④ Single document with DocList ♥ Document/gew architecture support Resource (anguage: 英文 (美國)	Use of MFC: Use MFC in a shared DLL Use MFC in a static library	
	Wizard - Test on Type Application type: ③ Single document ④ Dialog based ④ Single document with DocList ⑦ Document/Yew architecture support Resource language: 英文 (美國)	<pre>Wizard - Test on Type Application type:</pre>

3.7.2 How to use SUSI

Here is a simple example show you how to use SUSI to control buzzer beep.

- 1. Copy REL_SUSI.H, and susi.lib to your application folder and add these files to your project.
- 2. Add #include "REL_SUSI.H" to your source file.

3. Draw 2 buttons in previous example in Section 2.

4. Add following code to enable SUSI init

5. Add following code to control buzzer

- 6. Then you can Start Debugging with ActiveSync to try SUSI API.
- 7. Other SUSI API please refer to RSB-4210-SUSI_User_Maunal document.

3.8 Connect Device with PC with Activesync

- 1. Install Activesync 3.9.3.5 on PC
- Startup your WinEC7 platform. Go to Windows -> USBSet, Set USB Device Class Select to Active Sync.

File Zoom Iools	Help W Go			
C ActiveSync StartUp Cube	Desktop System	C EventLog	🗁 Favorites 🏷 www 🛋 initobj	C Fonts AdvPlatformS PlayWnd
	FSL U	SB Utility		OK ×
	TEST	Mode USB Device Class	s Select	
		USB Device Cla	iss Select: ync	
		Apply		

- 3. Connect device & PC via USB cable (RSB-4210 OTG client port is USB_ORG1)
- 4. Activesync will show "Connected"

🔞 Microsoft ActiveSync	
<u>File V</u> iew <u>T</u> ools <u>H</u> elp	
🚫 Sync 🕒 Schedule 🔯 Explore	
Guest	
Connected	
	Hide Details 🗙
Information Type Status	

5. Select Tools -> Connect to Device (Then select your target device) from your Visual Studio 2008 menu bar. Then it will show "Connection succeeded"

Connect to Device	? ×
To connect to a physical device or launch an emulator image, select a platform, then choose a device below.	Connect
Platform:	Cancel
ROM-1210-0	
Devices:	
ROM1210 ROM-1210-0 ARMV7 Device	

3.9 Implement Break Points

- Set breakpoints at you code, for example, code lines-Cfsl_tset_20110805Dlg::OnBnClickedButton26; SusiCoreSetBuzzer(1);
- 2. Then press "F5' to Start Debugging
- 3. Then you can see that it will stop at the breakpoint you set.
- 4. Then press "F5' to Continues Debugging, it will go to next breakpoint you set.
- 5. Finally, you can see you AP shown at the LCD screen of device

📽 fsl_tset_20110805 - Microsoft Visual St	udio		
File Edit Yiew Project Build (Debu	a <u>g T</u> ools Te <u>s</u> t <u>W</u> indow <u>H</u> elp <u>W</u> indows	▼ ROM-1210-0 (
ROM-1210-0 ARMV7 Device	•	Start Debugging F5	F (F) 🗄 😫 (
 Device: Solution Explorer - fsl_tset_20110805 Solution Ysl_tset_20110805' (1 proje Solution Ysl_tset_20110805' (1 proje fsl_tset_20110805.h 		Start Without Debugging Ctrl+F5 Attach to Process Exceptions Exceptions Ctrl+Alt+E Step Into F11 Step Qver F10 Toggle Breakpoint F9 New Breakpoint F9 Delete All Breakpoints Ctrl+Shift+F9 Disable All Breakpoints Sus1CoreSetBuzzer(U) } Sus1CoreSetBuzzer(U)	tset_20110805Dlg lg::OnBnClickedBu ntrol notificatio ; lg::OnBnClickedBu ntrol notificatio);

3.10 SUSI Library

SUSI - A Bridge to Simplify & Enhance H/W & Application Implementation Efficiency

When developers want to write an application that involves hardware access, they have to study the specifications to write the drivers. This is a time-consuming job and requires lots of expertise.

Advantech has done all the hard work for our customers with the release of a suite of APIs (Application Programming Interfaces), called the Secured & Unified Smart Interface (SUSI).

SUSI provides not only the underlying drivers required but also a rich set of userfriendly, intelligent and integrated interfaces, which speeds development, enhances security and offers add-on value for Advantech platforms. SUSI plays the role of catalyst between developer and solution, and makes Advantech embedded platforms easier and simpler to adopt and operate with customer applications.
Benefits

Faster Time to Market

SUSI's unified API helps developers write applications to control the hardware without knowing the hardware specs of the chipsets and driver architecture.

Reduced Project Effort

When customers have their own devices connected to the onboard bus, they can either: study the data sheet and write the driver & API from scratch, or they can use SUSI to start the integration with a 50% head start. Developers can reference the sample program on the CD to see and learn more about the software development environment.

Enhances Hardware Platform Reliability SUSI provides a trusted custom ready solution which combines chipset and library function support, controlling application development through SUSI

library function support, controlling application development through SUSI enhances reliability and brings peace of mind.

Flexible Upgrade Possibilities

SUSI supports an easy upgrade solution for customers. Customers just need to install the new version SUSI that supports the new functions.

SUSI Contains 5 + 1 Categories of Features:

Control

Control the devices connected to GPIO and I2C.

Display

Adjust the brightness of LCD panels or turn on/off the power of display devices.

Monitor

Monitor the system status, including voltage, temperature, fan speed and Watchdog function to restart if the system freezes or crashes.

Power Saving

Power Saving utility and API for software developers.

Security

API for AES encryption, RNG (random number generator), SRAM mirror feature and security ID storage.

Debug

Easier debugging with SUSI; when a SUSI API call fails, error codes help programmers know what exactly the error is. All the possible errors have been listed.

SUSI-RISC supports Control, Display and Monitor functions.

- Control
 - GPIO

General Purpose Input/Output is a flexible parallel interface that allows a variety of custom connections. It supports various Digital I/O devices - input devices like buttons, switches; output devices such as cash drawers, LED lights etc. And, allows users to monitor the level of signal input or set the output status to switch on/off the device.

- Programmable GPIO

The Programmable GPIO API allows developers to dynamically set the GPIO input or output status, GPIO in/out status is usually defined in BIOS, if customers need to have different settings, they must modify the BIOS. Now with the new Programmable GPIO, customers can change the settings in their application by calling the SUSI API; greatly saving development time.

− I²C

I²C is a bi-directional two wire bus that was developed by Philips for use in their televisions in the 1980s. Today, I²C is used in all types of embedded systems. The I²C API allows a developer to interface a CE PC to a down-stream embedded system environment and transfer serial messages using the I2C protocols, allowing multiple simultaneous device control.

Monitor

A watchdog timer (WDT) is a device or electronic card that performs a specific operation after a certain period of time if something goes wrong with an electronic system and the system does not recover on its own.

A watchdog timer can be programmed to perform a warm boot (restarting the system) after a certain number of seconds during which a program or computer fails to respond following the most recent mouse click or keyboard action.

Display

Brightness Control

The Brightness Control API allows a developer to interface Windows CE PC to easily control brightness.

Backlight

The Backlight API allows a developer to control the backlight (screen) on/off in Windows CE.

3.10.1 Package Contents

SUSI-RISC currently supports one OS - Windows CE. Contents are listed below:

Operating System	Location	Installation	
Windows CE	\Program Files\SUSI\V30	Image Built-in *	
Directory	Contents	·	
User Manual	SUSI_User_Manual.pdf		
	Susi.lib		
	Function export		
Library Files	Susi.dll		
	Dynamic link library		
Include Files	Susi.h		
	ioctrl.h / REL_SUSI.h		
	AdvPlatformSetting.exe		
SusiDemo	Demo program execution file		
Susidento	Susi.dll		
	Dynamic link library		
SusiDemo\SRC\ C	Source code of SusiDemo progra	im in EVC	

* Windows CE manual installation:

You can add the SUSI Library into the image by editing any bib file. First you open project.bib in the platform builder. Add this line to the MODULES section of project.bib Susi.dll \$(_FLATRELEASEDIR)\Susi.dll NK SH

If you want to run the window-based demo, add the following line: AdvPlatformSetting.exe \$(_FLATRELEASEDIR)\ AdvPlatformSetting.exe

Place the three files into any files directory.

Build your new Windows CE operating system.

3.10.2 Additional Programs

3.10.2.1 Demo Program

The SUSI demo program demonstrates how to incorporate SUSI library into the user's own applications. The program is written in EVC programming language and based on Windows Embedded Compact 7.

3.10.2.2 AdvPlatformSetting.exe

The execution file, AdvPlatformSetting.exe, released with source code can be run on Windows EC7.

The following pages are a detailed introduction to the AdvPlatformSetting program:

i. General

Advantech Platform	Setting		0	< ×
General Display Wa	tchdog Audio	Miscellaneous		
Platform Information				1
Name: ROM-1210				
Memory Size				J
	Total	In Use	Free	
DRAM (KB)	449772	141504	308268	
iNAND (KB)	1910944	300	1910644	
_F System Software —				
Windows EC 7.0	0.00.0001	2011	/11/15	
Boot Loader	0.0.0001	2011	/11/15	
Platform Setting	6.14.0307	2011	/05/09	
OK Cancel Apply				

Figure 3.13 General Information

All platform information is showed in this page.

Platform Information

Show H/W platform information.

Memory Size

- Show memory information.
- Show NAND Flash information

System Software

- Show information about the Operating System
- Show information about Boot Loader.
- Show information about platform.

ii. Display

Advantech Platform Setting OK 🗙
General Display Watchdog Audio Miscellaneous
[Backlight
Turn On Turn Off
[Brightness Contrast
min max
[VGA
NOTE: Change screen resolution need to restart system.
○ 800x480 ○ 1280x720 Custom
NOTE: Only For Hive Image !!
OK Cancel Apply

This page is about VGA control. You can control Backlight, Brightness and Screen resolution. ROM-1210 does not support to adjust contrast.

Backlight:

Turn ON/OFF backlight.

Brightness:

• Change the brightness from 0 up to 255.

VGA:

Change screen resolution.

iii. Watchdog

Ac	lvantech Platfo	orm Setting			OK >	<
G	eneral Display	Watchdog 🛛 A er ————————————————————————————————————	udio Miscella	aneous		
	Time Period :	5 seconds	-	Enable]	
	Time Delay :	5 seconds	~	Triggle]	
	Elapse Time :	00:00:00				
	Power Managen	nent ———			_	
	Economize	Sleep		ReBoot		
			ОК	Cancel	Apply]

This page contains "Watchdog" and "Power Management".

Watchdog Timer:

- A configurable time out counter with Time-out periods from 0.5 seconds up to 128 seconds.
- Time resolution of 0.5 seconds.
- Before the timer counts down, you may reset the timer by clicking the "Trigger" button. "Stop" function is not supported in SUSI-RISC.

Power Management:

This part implements Sleep function and Reboot function.

Advantech Platform Setting	OK ×
General Display Watchdog Audio Miscellaneous	
rPlayback	_
Speaker / Line Out	
O Mute	
Record	
O Mute	
Speaker ON Speaker OFF	
OK Cancel	Apply

This page demonstrates audio control.

Playback:

ROM-1210 only provides an audio output.

Record:

■ You can choose two input source, Microphone or Line In.

Speaker:

• You can turn ON/OFF the speaker.

v. Miscellaneous

Advantech Platform Setting	OK ×
General Display Watchdog Audio Miscellaneous	
Registry ActiveSync Save Clean Start Service Memory Management Allocate Memory Size Automatically.	
Ethernet Information eth0 MAC : 00 04 5F 01 55 EE eth1 MAC : 00 04 5F 01 55 EF	
Touch Panel Calibrate	
OK Cancel	Apply

Miscellaneous page contains Registry Control, ActiveSync, Ethernet Information and Touch Panel Calibrate.

Registry:

Our BSP supports hive-based registry. With the hive-based registry, you may save the changes in files on a storage device. For performance reasons, the registry changes saved after you had called "RegFlushKey".

ActiveSync:

ActiveSync allows you to transfers files from your PC to the Windows Mobile platform, and opens up a gateway to synchronizing data from your phone with your desktop computer.

Ethernet Information:

This part shows MAC Address of Ethernet chipset.

Touch Panel:

• You can calibrate the touch screen.

3.10.2.3 Programming Overview

Header Files

SUSI.H includes API declaration, constants and flags that are required for programming.

DEBUG.H / ERRDRV.H / ERRLIB.H are for debug code definitions.

DEBUG.H - Function index codes

ERRLIB.H - Library error codes ERRDRV.H - Driver error codes

Library Files

Susi.lib is for library import and Susi.dll is a dynamic link library that exports all the API functions.

Installation File

In Windows CE, the files and drivers mentioned above are already built-in to the image.

DII functions

SusiDII- APIs are driver-independent, i.e. they can be called without any drivers. In Windows CE, after drivers having been installed, users have to call SusiDIIInit for initialization before using any other APIs that are not SusiDII-prefixed. Before the application terminates, call SusiDIIUnInit to free allocated system resources.

When an API call fails, use SusGetLastError to get an error report. An error value will be either

Function Index Code + Library Error Code, or

Function Index Code + Driver Error Code

The Function Index Code indicates which API the error came from and the library / Driver Error Code indicates the actual error type, i.e. whether it was an error in a library or driver. For a complete list of error codes, please refer to the Appendix.

Core functions

SusiCore- APIs are available for all Advantech SUSI-enabled platforms to provide board information such as the platform name and BIOS version. New

SusiCoreAccessBootCounter and SusiCoreAccessBootCounter APIs are Boot Logger features that enable monitoring of system reboot times, total OS run time and continual run time.

Watchdog (WD) functions

The hardware watchdog timer is a common feature among all Advantech platforms. In user applications, call SusiWDSetConfig with specific timeout values to start the watchdog timer countdown, meanwhile create a thread or timer to periodically refresh the timer with SusiWDTrigger before it expires. If the application ever hangs, it will fail to refresh the timer and the watchdog reset will cause a system reboot.

GPIO (IO) functions

There are two sets of GPIO functions. It is highly recommended to use the new one. With pin read and write, more flexibility has been added to allow easy pin direction change as needed, as well as the capability of reading output pin status.

GPIO function set:

Refer to Appendix for pin allocation and their default direction.

IIC functions

The APIs here cover IIC standard mode operations with a 7-bit device address:

The slave address is expressed as a 7-bit hex number between 0x00 to 0x7F, however the actual addresses used for R/W are 8?bit write address = 7?bit address <<1 (left shift one) with LSB 0 (for write)

8-bit read address = 7-bit address <<1 (left shift one) with LSB 1 (for read)

E.g. Given a 7-bit slave address 0x20, the write address is 0x40 and the read address is 0x41.

Here in all APIs, parameter SlaveAddress is the 8-bit address and users don't need to care about giving it as a read or write address, since the actual R/W is taken care by the API itself, i.e. you could even use a write address, say 0x41 for APIs with write operation and get the right result, and vice versa.

For more details on platform IIC/SMBus support, please refer to Appendix A.

VGA Control (VC) functions

SusiVC- functions support VGA signal ON/OFF on all SUSI-enabled platforms and also LCD brightness adjustment. One application of SusiVCScreenOn and SusiVC-ScreenOff is to have the display signal disabled when system idles after certain period of time to expand the panel life span.

3.10.3 SUSI API Programmer's Documentation

All APIs return the BOOL data type except Susi*Available and some special cases that are of type int. If any function call fails, i.e. a BOOL value of FALSE, or an int value of -1, the error code can always be retrieved by an immediate call to SusiGet-LastError.

3.10.3.1 SusiDIIInit

Initialize the Susi Library. BOOL SusiDIIInit(void)

Parameters

None.

Return Value

TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

An application must call SusiDIIInit before calling any other non SusiDII functions.

3.10.3.2 SusiDIIUnInit

Unload the Susi Library. BOOL SusiDIIUnInit(void)

Parameters

None.

Return Value

TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

Before an application terminates, it must call SusiDIIUnInit if it has successfully called SusiDIIInit. Calls to SusiDIIInit and SusiDIIUnInit can be nested but must be paired.

3.10.3.3 SusiDllGetVersion

Retrieve the version numbers of SUSI Library. void SusiDIIGetVersion(WORD *major, WORD *minor)

Parameters

major[out] Pointer to a variable containing the major version number.*minor*[out] Pointer to a variable containing the minor version number.

Return Value

None.

Remarks

This function returns the version numbers of SUSI. It's suggested to call this function first and compare the numbers with the constants SUSI_LIB_VER_MJ and SUSI_LIB_VER_MR in header file SUSI. H to ensure the library compatibility.

3.10.3.4 SusiDIIGetLastError

This function returns the last error code value. int SusiDIIGetLastError(void)

Parameters

None.

Return Value

The code of error reason for the last function call with failure.

Remarks

You should call the SusiDIIGetLastError immediately when a function's return value indicates failure.

The return error code will be either

Function Index Code + Library Error Code, or

Function Index Code + Driver Error Code

The Function Index Code distinguishes which API the error resulted from and the library / Driver Error Code indicates the actual error type, i.e. if it is an error in a library or driver. For a complete list of error codes, please refer to the Appendix.

Check if Core driver is available. int SusiCoreAvailable (void)

Parameters

None.

Return Value

Value	Meaning
-1	The function fails.
0	The function succeeds; the platform does not support SusiCore- APIs.
1	The function succeeds; the platform supports Core.

Remarks

After calling SusiDIIInit successfully, all Susi*Available functions are used to check if the corresponding features are supported by the platform or not. So it is suggested to call Susi*Available before using any Susi*- functions.

3.10.3.6 SusiCoreGetPlatformName

Get the current platform name.

BOOL SusiCoreGetPlatformName(TCHAR *PlatformName, DWORD *size)

Parameters

PlatformName

[out] Pointer to an array in which the platform name string is returned.

size

[in/out] Pointer to a variable that specifies the size, in TCHAR, of the array pointed to by the PlatformName parameter.

If PlatformName is given as NULL, when the function returns, the variable will contain the array size required for the platform name.

Return Value

TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

Call the function twice, first by giving PlatformName as NULL to get the array size required for the string. Then allocate a TCHAR array with the size required and give the array with its size as parameters to get the platform name. Note that the platform name cannot be correctly retrieved if the BIOS is a release version.

3.10.3.7 SusiCoreSoftReset

Software reset function.

BOOL SusiCoreSoftReset(void)

Parameters

None.

Return Value

TRUE(1) indicates success; FALSE(0) indicates failure.

Remarks

Call this function to do software reset.

3.10.3.8 SusiCoreGetImageInfo

Get image information, including WinCE image version, WinCE image build date, Boot loader image version, and Boot loader image build date.

BOOL SusiCoreGetImageinfo(PIMGINFO pInfo)

Paramete

pInfo

[out] Retrieve image information

ImageInfo structure definition :

typedef struct {

- TCHAR *WinCEImageVersion;
- TCHAR *WinCEBuiltDate;
- TCHAR *BootloaderVersion;
- TCHAR *BootloaderDate;

} PIMGINFO, *PIMGINFO

Return Value

TRUE(1) indicates success; FALSE(0) indicates failure.

Remarks

Programmer can adjust program memory size in Mbytes by using this function. The format of WinCEBuiltDate & BootloaderDate is yyyymmdd.

3.10.3.9 SusiCoreGetMACAddr

Get MAC Address of LAN chip.

BOOL SusiCoreGetMACAddr (BYTE *MACAddr)

Parameters

MACAddr

[out] Pointer to a byte array containing the MAC address of LAN chip.

Return Value

TRUE(1) indicates success; FALSE(0) indicates failure.

3.10.3.10SusiCoreSetMACAddr

Set MAC Address of LAN chip. BOOL SusiCoreSetMACAddr (BYTE *MACAddr)

Parameters

MACAddr [in] Pointer to a byte array which is the new MAC address.

Return Value

TRUE(1) indicates success; FALSE(0) indicates failure.

3.10.3.11 SusiCoreRegistrySave

Save registry. BOOL SusiCoreRegistrySave(void)

Parameters

None.

Return Value TRUE(1) indicates success; FALSE(0) indicates failure.

Remarks

Call this function to save registry.

3.10.3.12SusiCoreRegistryClean

Clean registry to default.

BOOL SusiCoreRegistryClean(void)

Parameters

None.

Return Value

TRUE(1) indicates success; FALSE(0) indicates failure.

Remarks

Call this function to clean registry to default value, and then reset platform.

3.10.3.13SusiWDGetRange

Get the step, minimum and maximum values of the watchdog timer.

BOOL SusiWDGetRange(DWORD *minimum, DWORD *maximum, DWORD *stepping)

Parameters

Minimum

[out] Pointer to a variable containing the minimum timeout value in milliseconds

Maximum

[out] Pointer to a variable containing the maximum timeout value in milliseconds

Stepping

[out] Pointer to a variable containing the stepping timeout value in milliseconds

Return Value

TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

The values may vary from platform to platform; depending on the hardware implementation of the watchdog timer. For example, if the minimum timeout is 1000, the maximum timeout is 63000, and the step is 1000, it means the watchdog timeout will count 1, 2, 3 ... 63 seconds.

3.10.3.14SusiWDSetConfig

Start watchdog timer with specified timeout value.

BOOL SusiWDSetConfig(DWORD delay, DWORD timeout)

Parameters

delay

[in] Specifies a value in milliseconds which will be added to "the first" timeout period. This allows the application to have sufficient time to do initialization before the first call to SusiWDTrigger and still be protected by the watchdog.

timeout

[in] Specifies a duration in milliseconds for the watchdog timeout.

Return Value

TRUE (1) indicates success; FALSE (0) indicates failure

Remarks

Once the watchdog has been activated, its timer begins to count down. The application has to periodically call SusiWDTrigger to refresh the timer before it expires, i.e. reload the watchdog timer within the specified timeout or the system will reboot when it counts down to 0.

Actually a subsequent call to SusiWDTrigger equals a call to SusiWDSetConfig with delay 0 and the original timeout value, so if you want to change the timeout value, call SusiWDSetConfig with new timeout value instead of SusiWDTrigger.

Use SusiWDGetRange to get the acceptable timeout values.

3.10.3.15SusiWDTrigger

Reload the watchdog timer to the timeout value given in SusiWDSetConfig to prevent the system from rebooting.

BOOL SusiWDTrigger(void)

Parameters

None.

Return Value

TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

A watchdog protected application has to call SusiWDTrigger continuously to indicate that it is still working properly and prevent a system restart. The first call to Susi-WDTrigger in the middle of a delay resulting from a previous call to SusiWDSetConfig causes the delay timer to be canceled immediately and starts the watchdog timer countdown from the timeout value. It is always a good choice for users to have a longer delay time in SusiWDSetConfig.

3.10.3.16SusilOAvailable

Check if GPIO driver is available.

int SusiCoreAvailable (void)

Parameters

None.

Return Value

Value	Meaning
-1	The function fails.
0	The function succeeds; the platform does not support SusiIO- APIs.
1	The function succeeds; the platform supports GPIO.

Remarks

After calling SusiDIIInit successfully, all Susi*Available functions are used to check if the corresponding features are supported by the platform or not. It is suggested to call Susi*Available before using any Susi*- functions.

3.10.3.17SusilOCountEx

Query the current number of input and output pins. BOOL SusilOCountEx(DWORD *inCount, DWORD *outCount)

Parameters

inCount

[out] Pointer to a variable in which this function returns the count of input pins.

outCount

[out] Pointer to a variable in which this function returns the count of output pins.

Return Value

TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

The number of GPIO pins equals the number of input pins plus the number of output pins. The number of input and output pins may vary in accordance with the current pin direction.

3.10.3.18SusilOSetDirection

Set direction of one GPIO pin as input or output.

BOOL SusilOSetDirection(BYTE PinNum, BYTE IO, DWORD *Pin-DirMask)

Parameters

PinNum

[in] Specifies the GPIO pin to be changed, ranging from 0 \sim (total number of GPIO pins minus 1).

Ю

[in] Specifies the pin direction to be set.

PinDirMask

[out] Pointer to a variable in which the function returns the latest direction mask after the pin direction is set.

Return Value

TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

Use an IO value of 1 to set a pin as an input or 0 to set a pin as an output.

The function can only set the direction of one of the pins that are direction configurable. If the pin number specified is an invalid pin or a pin that can only be configured as an input, the function call will fail and return FALSE.

3.10.3.19SusilOReadEx

Read current status of one GPIO input or output pin.

BOOL SusilOReadEx(BYTE PinNum, BOOL *status)

Parameters

PinNum

[in] Specifies the GPIO pin demanded to be read, ranging from 0 \sim (total number of GPIO pins minus 1).

status

[out] Pointer to a variable in which the pin status returns.

Return Value

TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

If the pin is in status high, the value got in status will be 1. If the pin is in status low, it will be zero. The function is capable of reading the status of either an input pin or an output pin.

3.10.3.20SusilOWriteEx

Set one GPIO output pin as status high or low.

BOOL SusilOWriteEx(BYTE PinNum, BOOL status)

Parameters

PinNum

[in] Specifies the GPIO pin demanded to be written, ranging from $0 \sim$ (total number of GPIO pins minus 1).

status

[in]Specifies the GPIO status to be written.

Return Value

TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

The function can only set the status of one of the output pins. If the pin number specified is an input pin or an invalid pin, the function call will fail and return with FALSE. A status with 1 to set the pin as output high, 0 to set the pin as output low.

3.10.3.21 SusillCAvailable

Check if I2C driver is available and also get the IIC type supported. int SusiIICAvailable()

Parameters

None.

Return Value

Value	Meaning
-1	The function fails.
0	The function succeeds; the platform does not support any SusiIIC - APIs.
SUSI_IIC_TYPE_PRIMARY (1)	The function succeeds; the platform supports only primary IIC.
SUSI_IIC_TYPE_SMBUS (2)	The function succeeds; the platform supports only SMBus implemented IIC.
SUSI_IIC_TYPE_BOTH (3)	The function succeeds; the platform supports both primary IIC and SMBus IIC.

Remarks

After calling SusiDIIInit successfully, all Susi*Available functions are use to check if the corresponding features are supported by the platform or not. So it is suggested to call Susi*Available before using any Susi*- functions.

3.10.3.22SusillCRead

Read bytes of data from the target slave device in the I2C bus.

SUSI_API BOOL SusiIICRead(DWORD IICType, BYTE SlaveAddress,

BYTE *RegInx, BYTE *ReadBuf, DWORD ReadLen)

Parameters

IICType

[in]Specifies that I2C type, the value can either be

SUSI_IIC_TYPE_PRIMARY (1)

SUSI_IIC_TYPE_SMBUS (2)

SlaveAddress

[in] Specifies the 8-bit device address, ranging from 0x00 - 0xFF. Whether to give a 1 (read) or 0 (write) to the LSB of SlaveAddress could be ignored.

RegInx

[in] Registry Index.

ReadBuf

[out] Pointer to a variable in which the function reads the bytes of data.

ReadLen

[in] Specifies the number of bytes to be read.

Return Value

TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

Call SusiIICAvailable first to make sure the support I2C type. For more information about how to use this API, and the relationship between IIC and SMBus, please refer to "Programming Overview", parts "SMBus functions" to "IIC versus SMBus - compatibility"

3.10.3.23SusillCWrite

Write bytes of data to the target slave device in the I2C bus.

BOOL SusiIICWrite(DWORD IICType, BYTE SlaveAddress, BYTE BYTE *RegInx, *WriteBuf, DWORD WriteLen)

Parameters

IICType

[in] Specifies the I2C type, the value can either be SUSI_IIC_TYPE_PRIMARY (1)

SUSI_IIC_TYPE_SMBUS (2)

SlaveAddress

[in] Specifies the 8-bit device address, ranging from 0x00 - 0xFF. Whether to give a 1 (read) or 0 (write) to the LSB of SlaveAddress could be ignored.

RegInx

[in] Registry Index.

WriteBuf

[in] Pointer to a byte array which contains the bytes of data to be written. *WriteLen*

[in] Specifies the number of bytes to be written.

Return Value

TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

Call SusiIICAvailable first to make sure the support I2C type. For more information about how to use this API, and the relationship between IIC and SMBus, please refer to "Programming Overview", parts "SMBus functions" to "IIC versus SMBus - compatibility".

3.10.3.24SusillCWriteReadCombine

A sequential operation to write bytes of data followed by bytes read from the target slave device in the I2C bus.

BOOL SusiIICWriteReadCombine(DWORD IICType, BYTE

SlaveAddress, BYTE *RegInx, BYTE *WriteBuf, DWORD WriteLen, BYTE *ReadBuf,DWORD ReadLen)

Parameters

IICType

[in] Specifies the I2C type, the value can either be SUSI_IIC_TYPE_PRIMARY (1) SUSI_IIC_TYPE_SMBUS (2)

SlaveAddress

[in] Specifies the 8-bit device address, ranging from 0x00 - 0xFF. Whether to give a 1 (read) or 0 (write) to the LSB of SlaveAddress could be ignored.

RegInx

[in] Registry Index.

WriteBuf

[in] Pointer to a byte array which contains the bytes of data to be written.

WriteLen

[in] Specifies the number of bytes to be written.

ReadBuf

[out] Pointer to a variable in which the function reads the bytes of data.

ReadLen

[in]Specifies the number of bytes to be read

Return Value

TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

The function is mainly for EEPROM I2C devices - the bytes written first are used to locate to a certain address in ROM, and the following bytes read will retrieve the data bytes starting from this address.

Call SusiIICAvailable first to make sure the support I2C type. For more information about how to use this API, and the relationship between IIC and SMBus, please refer to "Programming Overview", parts "SMBus functions" to "IIC versus SMBus - compatibility"

3.10.3.25SusiVCAvailable

Check if VC driver is available and also get the feature support information. BOOL SusiVCAvailable(void)

Parameters

None.

Return Value

Value	Meaning
-1	The function fails.
0	The function succeeds; the platform
	does not support any SusiVC- APIs.
SUSI_VC_BRIGHT_CONTROL_AVAILABLE (1)	The function succeeds; the platform supports only brightness APIs.
SUSI_VC_VGA_CONTROL_AVAILABLE (2)	The function succeeds; the platform supports only screen on/off APIs.
SUSI_VC_BOTH_AVAILABLE (3)	The function succeeds; the platform supports all SusiVC- APIs.

Remarks

After calling SusiDIIInit successfully, all Susi*Available functions are use to check if the corresponding features are supported by the platform or not. So it is suggested to call Susi*Available before using any Susi*-functions.

3.10.3.26SusiVCGetBrightRange

Get the step, minimum and maximum values in brightness adjustment.

BOOL SusiVCGetBrightRange(BYTE *minimum, BYTE *maximum, BYTE *stepping)

Parameter

minimum

[out]Pointer to a variable to get the minimum brightness value. maximum [out]Pointer to a variable to get the maximum brightness value. stepping [out]Pointer to a variable to get the step of brightness up and down

Return Value

TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

Call SusiVCAvailable first to make sure if the brightness control is available. The values may vary from platform to platform; depend on the hardware implementations of brightness control. For example, if minimum is 0, maximum is 255, and stepping is 5, it means the brightness can be 0, 5, 10, ..., 255.

3.10.3.27SusiVCGetBright

Get the current panel brightness. BOOL SusiVCGetBright(BYTE *brightness)

Parameters

brightness

[out]Pointer to a variable in which this function returns the brightness.

Return Value

TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

Call SusiVCAvailable first to make sure if the brightness control is available.

3.10.3.28SusiVCSetBright

Set current panel brightness. BOOL SusiVCSetBright(BYTE brightness)

Parameters

brightness

[in] Specifies the brightness value to be set.

Return Value

TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

Call SusiVCAvailable first to make sure if the brightness control is available. In some implementations, the higher the brightness value, the higher the voltage fed to the panel. So please make sure the voltage toleration of your panel prior to the API use.

3.10.3.29SusiVCScreenOn

Turn on VGA display signal. BOOL SusiVCScreenOn(void)

Parameters

None.

Return Value

TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

The function enables both the LCD and CRT display signals.

3.10.3.30SusiVCScreenOff

Turn off VGA display signal. BOOL SusiVCScreenOff(void)

Parameters

None.

Return Value

TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

The function disables both the LCD and CRT display signals.

3.10.3.31 SusiSPIAvailable

Check if SPI driver is available. int SusiSPIAvailable (void)

Parameters

None.

Return Value

Value	Meaning
-1	The function fails.
0	The function succeeds; the platform does not support SusiIO- APIs.
1	The function succeeds; the platform supports SPI.

Remarks

After calling SusiDIIInit successfully, all Susi*Available functions are used to check if the corresponding features are supported by the platform or not. It is suggested to call Susi*Available before using any Susi*- functions.

3.10.3.32SusiSPISetBusConfig

Set SPI channel, frequency and data rate for SPI control..

void SusiSPISetBusConfig(BYTE ch, BYTE freq, BYTE dataRate)

Parameters

ch

[in] Specifies the channel value to be set.

freq

[in] Specifies the frequency value to be set.

dataRate

[in] Specifies the data rate value to be set.

Return Value

None

Remarks

The default parameters list below.

Parameter	Value	
ch	0	
frqy	1600000	
dataRate	32	

3.10.3.33SusiSPIExchange

This function performs SPI exchange operations. BOOL SusiSPIExchange(DWORD *txBuf, DWORD *rxBuf)

Parameters

txBuf

[in] Pointer to the SPI Tx data buffer in the Packet *rxBuf*[in] Pointer to the SPI Rx data buffer in the Packet

Return Value

TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

The max size for Tx/Rx data buffer is 1024 bytes.

API Error Code

An error value will be either

Function Index Code + Library Error Code, or

Function Index Code + Driver Error Code.

If you call an API and returns with fail. The Function Index Code in its error code combination does not necessarily equal to the index code of the API. This is because the API may make a call to another API.

A.1 Function Index Code

Index Code	Function Index	
DLL		
00100000	ESusiInit	
00200000	ESusiUnInit	
00300000	ESusiGetVersion	
00400000	ESusiDllInit	
00500000	ESusiDllUnInit	
00600000	ESusiDllGetVersion	
00700000	ESusiDllGetLastError	
Core		
10100000	ESusiCoreInit	
10200000	ESusiCoreAvailable	
10300000	ESusiCoreGetBIOSVersion	
10400000	ESusiCoreGetPlatformName	
10500000	ESusiCoreAccessBootCounter	
10600000	ESusiCoreAccessRunTimer	
10700000	ESusiCoreRebootSystem	
10800000	ESusiReserved8000000	
	Watchdog	
20100000	ESusiWDInit	
20200000	ESusiWDAvailable	
20300000	ESusiWDDisable	
20400000	ESusiWDGetRange	
20500000	ESusiWDSetConfig	
20600000	ESusiWDTrigger	

GPIO		
30100000	ESusiIOInit	
30200000	ESusiIOAvailable	
30300000	ESusiIOCount	
30400000	ESusiIOInitial	
30500000	ESusiIORead	
30600000	ESusiIOReadMulti	
30700000	ESusiIOWrite	
30800000	ESusiIOWriteMulti	
30900000	ESusiIOCountEx	
31000000	ESusiIOQueryMask	
31100000	ESusiIOSetDirection	
31200000	ESusiIOSetDirectionMulti	
31300000	ESusiIOReadEx	
31400000	ESusiIOReadMultiEx	
31500000	ESusiIOWriteEx	
31600000	ESusiIOWriteMultiEx	
	SMBus (N/A in SUSI-RISC)	
40100000	ESusiSMBusInit	
40200000	ESusiSMBusAvailable	
40300000	ESusiSMBusReadByte	
40400000	ESusiSMBusReadByteMulti	
40500000	ESusiSMBusReadWord	
40600000	ESusiSMBusWriteByte	
40700000	ESusiSMBusWriteByteMulti	
40800000	ESusiSMBusWriteWord	
40900000	ESusiSMBusReceiveByte	
41000000	ESusiSMBusSendByte	
41100000	ESusiSMBusWriteQuick	
41200000	ESusiSMBusReadQuick	
41300000	ESusiSMBusScanDevice	
41400000	ESusiSMBusWriteBlock	
41500000	ESusiSMBusReadBlock	
	IIC	
50100000	ESusiIICInit	
50200000	ESusiIICAvailable	
50300000	ESusiIICReadByte	
50400000	ESusiIICWriteByte	
50500000	ESusiIICWriteReadCombine	
50600000	ESusiIICRead	

50700000	ESusiIICWrite	
50800000	ESusiIICScanDevice	
50900000	ESusiIICWriteRegister	
51000000	ESusiIICReadRegister	
VGA Control		
60100000	ESusiVCInit	
60200000	ESusiVCAvailable	
60300000	ESusiVCGetBright	
60400000	ESusiVCGetBrightRange	
60500000	ESusiVCScreenOff	
60600000	ESusiVCScreenOn	
60700000	ESusiVCSetBright	
Hardware Monitor (N/A in SUSI-RISC)		
70100000	ESusiHWMInit	
70200000	ESusiHWMAvailable	
70300000	ESusiHWMGetFanSpeed	
70400000	ESusiHWMGetTemperature	
7050000	ESusiHWMGetVoltage	
70600000	ESusiHWMSetFanSpeed	

A.2 Library Error Code

Error Code	Error Type	
Driver Open Errors		
00000001	ERRLIB_CORE_OPEN_FAIL	
0000002	ERRLIB_WDT_OPEN_FAIL	
00000004	ERRLIB_GPIO_OPEN_FAIL	
00000008	ERRLIB_SMB_OPEN_FAIL	
00000016	ERRLIB_VC_OPEN_FAIL	
00000032	ERRLIB_HWM_OPEN_FAIL	
	DLL Functions	
00000000	ERRLIB_SUCCESS	
00000001	ERRLIB_RESERVED1	
0000002	ERRLIB_RESERVED2	
0000003	ERRLIB_LOGIC	
00000004	ERRLIB_RESERVED4	
00000005	ERRLIB_SUSIDLL_NOT_INIT	
0000006	ERRLIB_PLATFORM_UNSUPPORT	
0000007	ERRLIB_API_UNSUPPORT	
00000008	ERRLIB_RESERVED8	

0000009	ERRLIB API CURRENT UNSUPPORT		
00000010	ERRLIB_LIB_INIT_FAIL		
00000011	ERRLIB_DRIVER_CONTROL_FAIL		
00000012	ERRLIB_INVALID_PARAMETER		
00000013	ERRLIB_INVALID_ID		
00000014	ERRLIB_CREATEMUTEX_FAIL		
00000015	ERRLIB_OUTBUF_RETURN_SIZE_INCORRECT		
00000016	ERRLIB_RESERVED16		
00000017	ERRLIB_ARRAY_LENGTH_INSUFFICIENT		
00000032	ERRLIB_RESERVED32		
00000050	ERRLIB_BRIGHT_CONTROL_FAIL		
00000051	ERRLIB_BRIGHT_OUT_OF_RANGE		
00000064	ERRLIB_RESERVED64		
00000128	ERRLIB_RESERVED128		
00000256	ERRLIB_RESERVED256		
	Core Functions		
00000510	ERRLIB_CORE_BIOS_STRING_NOT_FOUND		
00000512	ERRLIB_RESERVED512		
	Watchdog Functions		
00001024	ERRLIB_RESERVED1024		
	GPIO Functions (N/A)		
S	MBus Functions (N/A in SUSI-RISC)		
00001400	ERRLIB_SMB_MAX_BLOCK_SIZE_MUST_WITHIN_32		
	IIC Functions		
00001600	ERRLIB_IIC_GETCPUFREQ_FAIL		
	VGA Control Functions (N/A)		
Hardwa	re Monitor Functions (N/A in SUSI-RISC)		
00002000	ERRLIB_HWM_CHECKCPUTYPE_FAIL		
00002001	ERRLIB_HWM_FUNCTION_UNSUPPORT		
00002002	ERRLIB_HWM_FUNCTION_CURRENT_UNSUPPORT		
00002003	ERRLIB_HWM_FANDIVISOR_INVALID		
00002048	ERRLIB_RESERVED2048		
Reserved Functions			
00004096	ERRLIB_RESERVED4096		
00008192	ERRLIB_RESERVED8192		

A.3 Driver Error Code

Error code	Error Type		
00000000	ERRDRV_SUCCESS		
Common to all Drivers			
00010000	ERRDRV_CTRLCODE		
00010001	ERRDRV_LOGIC		
00010002	ERRDRV_INBUF_INSUFFICIENT		
00010003	ERRDRV_OUTBUF_INSUFFICIENT		
00010004	ERRDRV_STOPTIMER_FAILED		
00010005	ERRDRV_STARTTIMER_FAILED		
00010006	ERRDRV_CREATEREG_FAILED		
00010007	ERRDRV_OPENREG_FAILED		
00010008	ERRDRV_SETREGVALUE_FAILED		
00010009	ERRDRV_GETREGVALUE_FAILED		
00010010	ERRDRV_FLUSHREG_FAILED		
00010011	ERRDRV_MEMMAP_FAILED		
	Core Driver (N/A)		
	Watchdog Driver (N/A)		
	GPIO Driver		
00011200	ERRDRV_GPIO_PIN_DIR_CHANGED		
00011201	ERRDRV_GPIO_PIN_INCONFIGURABLE		
00011202	ERRDRV_GPIO_PIN_OUTPUT_UNREADABLE		
00011203	ERRDRV_GPIO_PIN_INPUT_UNWRITTABLE		
00011204	ERRDRV_GPIO_INITIAL_FAILED		
00011205	ERRDRV_GPIO_GETINPUT_FAILED		
00011206	ERRDRV_GPIO_SETOUTPUT_FAILED		
00011207	ERRDRV_GPIO_GETSTATUS_IO_FAILED		
00011208	ERRDRV_GPIO_SETSTATUS_OUT_FAILED		
00011209	ERRDRV_GPIO_SETDIR_FAILED		
	SMBus Driver (N/A in SUSI-RISC)		
00011400	ERRDRV_SMB_RESETDEV_FAILED		
00011401	ERRDRV_SMB_TIMEOUT		
00011402	ERRDRV_SMB_BUSTRANSACTION_FAILED		
00011403	ERRDRV_SMB_BUSCOLLISION		
00011404	ERRDRV_SMB_CLIENTDEV_NORESPONSE		
00011405	ERRDRV_SMB_REQUESTMASTERMODE_FAILED		
00011406	ERRDRV_SMB_NOT_MASTERMODE		
00011407	ERRDRV_SMB_BUS_ERROR		
00011408	ERRDRV_SMB_BUS_STALLED		
00011409	ERRDRV_SMB_NEGACK_DETECTED		

-	
1	
÷.,	
0	
7	_
<	
à	
C	
	× .
-	_
_	_
С	
1	
-	
Ν.	
2	Κ.
r.,	
P	
1	
-	_
	U.
_	_
_	
r.	
_	-
	- 10
_	<u> </u>
1	
0	
-	
-	_
	_
r	
U.	
-	
C	
C.	
2	5
C	
-	
1	
C	D
-1	

00011410	ERRDRV_SMB_TRANSMITMODE_ACTIVE		
00011411	ERRDRV_SMB_TRANSMITMODE_INACTIVE		
00011412	ERRDRV_SMB_STATE_UNKNOWN		
IIC Driver			
00011600	ERRDRV_IIC_RESETDEV_FAILED		
00011601	ERRDRV_IIC_TIMEOUT		
00011602	ERRDRV_IIC_BUSTRANSACTION_FAILED		
00011603	ERRDRV_IIC_BUSCOLLISION		
00011604	ERRDRV_IIC_CLIENTDEV_NORESPONSE		
00011605	ERRDRV_IIC_REQUESTMASTERMODE_FAILED		
00011606	ERRDRV_IIC_NOT_MASTERMODE		
00011607	ERRDRV_IIC_BUS_ERROR		
00011608	ERRDRV_IIC_BUS_STALLED		
00011609	ERRDRV_IIC_NEGACK_DETECTED		
00011610	ERRDRV_IIC_TRANSMITMODE_ACTIVE		
00011611	ERRDRV_IIC_TRANSMITMODE_INACTIVE		
00011612	ERRDRV_IIC_STATE_UNKNOWN		
VGA Control Driver			
00011800	ERRDRV_VC_FINDVGA_FAILED		
00011801	ERRDRV_VC_FINDBRIGHTDEV_FAILED		
00011802	ERRDRV_VC_VGA_UNSUPPORTED		
00011803	ERRDRV_VC_BRIGHTDEV_UNSUPPORTED		
Hardware Monitor Driver (N/A)			

www.advantech.com

Please verify specifications before quoting. This guide is intended for reference purposes only.

All product specifications are subject to change without notice.

No part of this publication may be reproduced in any form or by any means, electronic, photocopying, recording or otherwise, without prior written permission of the publisher.

All brand and product names are trademarks or registered trademarks of their respective companies.

© Advantech Co., Ltd. 2012