
 1PCM-3680 User's ManualPC/104 and the PC/104 logo are trademarks of the PC/104 Consortium Part no. 2000368000 1st Edition Printed in Taiwan May 1996

PC
/1
04E

M
B

EDDED-PC

M O D U

L
E

S

P
C

M
-3

6
8

0
 P

C
/1

0
4

 D
u

a
l P

o
rt C

A
N

 In
te

rfa
c

e
 M

o
d

u
le

Jumper & Switch Locations

Features

• Operates 2 separate CAN networks at the same time

• High speed transmission up to 1 Mbps

• 16 MHz CAN controller frequency

• Takes a 4 KB address space, 40 base address
adjustable in steps from C800H up to EF00H

• Optical isolation protection of 1000 VDC ensures
system reliability

• Wide IRQ selection for each port includes:
IRQ 3, 4, 5, 6,7, 9, 10, 11, 12, 15

• LED indicates Transmit/Receive status on each port

• Direct memory mapping enables speedy access to
the CAN controllers

• C library and examples included

PCM-3680 REV. A1

CH#1 CH#2IRQ

C
H

#
1

C
H

#
1

C
H

#
2

C
H

#
2

D1
C1

A1
B1

JP6

JP5

T
R

1
T

R
2

D
IP

S
W

A
1

7

A
1

5

A
1

4

A
1

3

A
1

2

A
1

6

RX2TX2RX1TX1

3

15

12
11
10
9
7
6
5
4

B32
A32

C20
D20

PCM-3680 PC/104
Dual Port CAN Interface Module

 IJumper Settingntroduction

The PCM-3680 is a special purpose communication
card that brings the Control Area Network to your PC.
With the built-in CAN controller, the PCM-3680
provides bus arbitration and error detection with
automatic transmission repeat function. This drastically
avoids data loss and ensures system reliability. The
on-board CAN controllers are located at different
positions in the memory. You can run both CAN
controllers at the same time, independently. The
PCM-3680 operates at baud rates up to 1 Mbps and
can be installed directly into the expansion slot of your
PC.

Contr ol Area Netw ork

The CAN (Control Area Network) is a serial bus
system especially suited for networking "intelligent"
I/O devices as well as sensors and actuators within a
machine or plant. Characterized by its multi-master
protocol, real-time capability, error correction, high
noise immunity, and the existence of many different
silicon components, the CAN serial bus system,
originally developed by Bosch for use in automobiles,
is increasingly being used in industrial automation.

Direct Memor y Mapping

The PCM-3680 is assigned with memory address,
which allows direct access to the CAN controller. This
is the simplest and fastest way of programming any
board in a PC because the board is regarded as
standard RAM.

Optical Isolation Pr otection

On-board optical isolators protect your PC and
equipment against damage from ground loops,
increasing system reliability in harsh environments.

Specifications

• Ports : 2

• CAN cont rolle r: SJA-1000

• CAN transceiver : 82C250

• Signal support : CAN-L, CAN-H

• Memory address : From C800H to EF00H

• IRQ: 3, 4, 5, 6, 7, 9, 10, 11, 12, 15

• Isolation voltage : 1000 VDC

• Power consumption : +5 V @ 400 mA typical,
950 mA max.

• Connectors : Dual DB-9 male connectors

• Operating temperature : 32 to 122° F (0 to 50° C)

• PC/104 form factor : 3.6" x 3.8"
(90 mm x 96 mm)

• Shipping weight : 0.9 lb (0.4 kg)

2 PCM-3680 User's Manual

 Initial Inspection

In addition to this user’s manual, your shipping box should
contain the following items:

• PCM-3680 Dual-port CAN Interface Card

• C Driver and DataMonitor Utility Diskette

WARNING! Discharge your body’s static electric
charge by touching the back of the
grounded chassis of the system unit
(metal) before handling the board. You
should avoid contact with materials that
hold a static charge such as plastic,
vinyl, and styrofoam. The board should
be handled only by its edges to avoid
static damage to its integrated circuits.
Avoid touching the exposed circuit
connectors.

 Installation

Card Configuration
The PCM-3680 has two ports, each with one jumper. The
jumpers set the IRQ for the ports, which can be configured
separately. A DIP switch sets the memory base address for
each port. The following chart shows the function of the
jumper and the switch (see the previous page for jumper
and switch locations).

Switch and jumper functions

IRQ Setup

 JP1 Port 1

 JP2 Port 2

Memory base address

 SW1 Port 1, Port 2

Default Settings

• Port 1 is set for COM1 (IRQ=12, Memory address =
DA00:0000).

• Port 2 is set for COM2 (IRQ=15, Memory address =
DA00:0200).

If you need to change these settings, see the following
sections. Otherwise, you can simply install the card. Note
that you will need to disable your CPU card's on-board
COM ports, if any, or set them to alternate addresses/IRQs.

Jumpers and Switches
Jumpers JP1 and JP2 set the interrupts for Port 1 and Port
2, respectively. You can choose any IRQ from 3 to 15,
except 8, 13 and 14. When you choose IRQs, make sure
they are not used for other cards in the system. The
following figures show the card's default settings.

JP1: Port 1 IRQ Default JP2: Port 2 IRQ Default

Memory Base Address (SW1)

The memory base address for the PCM-3680, which
requires 4 KB of address space, is made up of the memory
segment and its associated offset. The address for the
memory segment is set through SW1, a six-position DIP
switch. You can choose any base address from C800 to
EF00. The following table shows the DIP switch settings
and the corresponding base addresses.

Memory address configuration (SW1)

Address/DIP switch A12 A13 A14 A15 A16 A17
C800H on on on off on on

C900H off on on off on on

CA00H on off on off on on

CB00H off off on off on on

CC00H on on off off on on

CD00H off on off off on on

CE00H on off off off on on

CF00H off off off off on on

D000H on on on on off on

D100H off on on on off on

D200H on off on on off on

D300H off off on on off on

D400H on on off on off on

D500H off on off on off on

D600H on off off on off on

D700H off off off on off on

D800H on on on off off on

D900H off on on off off on

DA00H on off on off off on

DB00H off off on off off on

DC00H on on off off off on

DD00H off on off off off on

DE00H on off off off off on

DF00H off off off off off on

E000H on on on on on off

E100H off on on on on off

E200H on off on on on off

E300H off off on on on off

E400H on on off on on off

E500H off on off on on off

E600H on off off on on off

E700H off off off on on off

E800H on on on off on off

E900H off on on off on off

EA00H on off on off on off

EB00H off off on off on off

EC00H on on off off on off

ED00H off on off off on off

EE00H on off off off on off

EF00H off off off off on off

¡ ¡
¡ ¡
¡ ¡
¡ ¡
¡ ¡
¡ ¡
¡ ¡
¡ ¡
¡ ¡
¡ ¡

IRQ Ch.1

3
4
5
6
7
9

10
11
12
15

¡ ¡
¡ ¡
¡ ¡
¡ ¡
¡ ¡
¡ ¡
¡ ¡
¡ ¡
¡ ¡
¡ ¡

IRQ Ch.2

3
4
5
6
7
9

10
11
12
15

 3PCM-3680 User's Manual

Memory Area

Once the memory segment for the base address is
selected, the offset will be automatically assigned for Port
1, Port 2, and hardware reset. The following table shows the
base addresses of the CAN controllers.

Base address (hex) CAN controller

base:0000h - base:00FFh Basic- Port 1

base:0100h - base:01FFh HW reset Basic - Port 1

base:0200h - base:02FFh Basic- Port 2

base:0300h - base:03FFh HW reset Basic - Port 2

base:0400h - base:0FFFh Not used

 Software Programming

Quick Reference Table
The following table lists the available functions and their
corresponding syntax and descriptions.

Library functions

Function Syntax (in C) Description
1 canInitHW() Sets IRQs

2 canExitHW() Releases settings

3 canReset() Resets CAN port

4 canConfig() Controls CAN port settings

5 canNormalRun() Sets mode

6 canSendMsg() Sends message

7 canReceiveMsg() Reads data

Complete Function Description

Function 1

Sets an IRQ number for Port1 and Port 2.

å Command canInitHW (UI segment, BYTE
IRQ1, BYTE IRQ2)

å Argument UI segment, BYTE IRQ1, BYTE IRQ2
segment=c000-df00 step 0x100
IRQ1=Port 1 IRQ number 0 (polling),
3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15
IRQ2=Port 2 IRQ number 0 (polling),
, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15
0: polling

å Response 1=successful
0=fail

å Example
#include "can841.h"
main()
{

UI gSegment=0xDA00;
BYTE CAN1_IRQ, CAN2_IRQ;
CAN1_IRQ=12;
CAN2_IRQ=15;
if (canInitHW (gSegment, CAN1_IRQ, CAN2_IRQ)==0)

printf ("HARDWARE INITIALIZATION ERROR!\n");
}

Function 2

Releases all settings of the CAN card.

å Command canExitHW()

å Argument None

å Response 1=successful
0=fail

å Example
#include "can841.h"
main()
{

if (canExitHW()==0)
printf ("CAN RELEASE FAIL!\n");

}

Function 3

Resets CAN port and flushes the TX/RX buffers.

å Command int canReset (BYTE port);

å Argument BYTE port; port= port number (0 or 1)

å Response 1=successful
0=fail

å Example
#include "can841.h"
main()
{

if (canReset (0)==0)
printf ("RESET PORT 1 FAIL!\n");

}

Function 4

Controls the setting of the CAN port's acceptance code,
acceptance mask, and bus timing register.

å Command canConfig (BYTE port, CAN_STRUCT can);

å Argument BYTE port, CAN_STRUCT can;
port= port number (0 or 1)
can= CAN struct pointer

å Response 1=successful
0=fail

å Example
#include "can841.h"
main()
{

CAN_STRUCT can1, can2;
can1.acc_code=0;
can1.acc_mask=0xff;
can1.bt0=0;
can1.bt1=0x1c;
if (canConfig(0,can1)==0)

printf ("CAN PORT 1 CONFIGURE ERROR!\n");
}

4 PCM-3680 User's Manual

Function 5

Sets a CAN port to normal mode for normal operation.

å Command canNormalRun (BYTE port);

å Argument BYTE port;port= port number (0 or 1)

å Response 1=successful
0=fail

å Example
#include "can841.h"
main()
{

if (canNormalRun(0)==0)
printf ("CAN Port 1 can't change to Normal Mode!\n");

}

Function 6

Tells the CAN port to send a message.

å Command canSendMsg (BYTE port,
MSG_STRUCT send_msg);

å Argument BYTE port, MSG_STRUCT send_msg;
port= port number (0 or 1) send_msg=
send buffer pointer

å Response 1=successful
0=fail

å Example
#include "can841.h"
main()
{

MSG_STRUCT smsg1;
UI i;
smsg1.id=0x015;
smsg1.rtr=0;
smsg1.dlen=8;
for(i=0; i<smsg1.dlen; i++)

smsg1.data[i]=i;
if (canSendMsg(0,smsg1)==1)

printf ("TRANSMISSION SUCCESSFUL!\n");
}

Function 7

Read data from CAN port input buffer.

å Command int canReceiveMsg (BYTE port,
MSG_STRUCT *msg_ptr);

å Argument BYTE port, MSG_STRUCT *msg_ptr;
port= port number (0 or 1) *msg_ptr=
input buffer pointer

å Response 1=message received
0=no message received

å Example
#include "can841.h"
main()
{

MSG_STRUCT rmsg2;
if (canReceiveMSG, *rmsg2)==1)
{

printf ("Port2 receive: ID=%3X RTR=%ld
Length=%ld", rmsg2.id, rmsg2.rtr, rmsg2.dlen);

for (i=0; i<rmsg2.dlen; i++)
cprintf (" %2X", rmsg2.data[i]);

}
}

Example Program

The following example program, can841.lib, implements the
sending and receiving of messages over the CAN
controller. The program is written in C.

#include “can841.h” /*Library function declaration*/
/*---------------------------------------*/

/* CAN controller interrupt connection */
#define CAN1_IRQ 12 /* 0 means polling */
#define CAN2_IRQ 15 /* 0 means polling */
#define PORT1 0
#define PORT2 1
#define FAIL 0
#define SUCCESS 1

void main(void)
{

/* Declare the CAN card segment address. */
UI gSegment=0xDA00;
CAN_STRUCT can1, can2;
MSG_STRUCT smsg1, smsg2;
MSG_STRUCT rmsg1, rmsg2;
UI i;

if(canInitHW(gSegment,CAN1_IRQ,CAN2_IRQ)==FAIL)
{

clrscr();
cprintf("\n\n Hardware Initializa
tion Error");
return;

}

/* Reset CAN controller */
canReset(PORT1);
canReset(PORT2);

can1.acc_code=0; /* */
can1.acc_mask=0xff; /* */
can1.bt0=03; /*baud rate 1Mbps*/
can1.bt1=0x1c;
if(canConfig(PORT1,can1)==FAIL)
{

clrscr();
cprintf("\n\n CAN Port %d Configuration
Error",1);
return;

}
memcpy(&can2, &can1, sizeof(CAN_STRUCT));
if(canConfig(PORT2,can2)==FAIL)
{

clrscr();
cprintf("\n\n CAN Port %d Configuration
Error", 2);
return;

}
canNormalRun(PORT1); /*Put CAN1 into normal mode.*/
canNormalRun(PORT2); /*Put CAN2 into normal mode.*/

clrscr();

smsg1.id = 0x015; /* Set ID =8 */
smsg1.rtr=1; /* Data lengths =8 */
smsg1.dlen=8;
for(i=0; i<smsg1.dlen; i++)
smsg1.data[i] =i;
while(1)
{

canSendMsg(PORT1, smsg1); /*Send to CAN1*/
if(canReceiveMsg(PORT2, &rmsg2)==1)
{

cprintf("PORT2 receive:ID=%3X
RTR=%1d Length=%1d",

rmsg2.id,rmsg2.rtr, rmsg2.dlen);

 5PCM-3680 User's Manual

The port configuration window is shown below.

The parameters below need to be configured for each CAN
controller:

Address segment: The base address (address segment)
of the PCM-3680 is normally adjusted during the installation
process. The selection of the address segment needs to be
the same as that of the hardware configuration.

Port: Select the port you want to configure.

Baud rate: The baud rate must be coordinated with the
CAN network. Choose the appropriate one from the list of
baud rates.

Acceptance code: Specifies the value of the 8 most
significant bits of the identifier (ID10 ... ID 3)

Acceptance mask : Specifies the bit positions which are
"relevant" for acceptance filtering.

Note: The acceptance code and acceptance mask are
configured through eight digits (1 digit per bit) using 0 or 1.

Value Definition

 0 This bit position will accept only a "relevant"
message.

 1 This bit position will not screen messages.

Example: Acc Code = 11111111
Acc Mask =11111111

The shown acceptance filter will accept every received
message.

Interrupt: Sets the interrupt for each port. Be sure that
this setting matches the IRQ already selected for the PCM-
3860, which accepts values between IRQ3 to IRQ15,
except 8 and 13.

Running mode: During the normal configuration and
communication process, select Normal Mode. When the
system fails, you can hit <Enter> to reset the CAN
controller. Hit <Enter> again to return to Normal Mode to
further execute your configuration.

Monitor
Select the port to be monitored from the <Monitor> pull-
down menu. Press F3 to start and stop the monitoring
process.

C

C

C

C

A

for(i=0; i< rmsg2.dlen; i++)
cprintf(" %2X",rmsg2.data[i]);

printf("\n");
}
if (kbhit())
{

getch();
break;

}
}

/* Reset CAN controller. */
canReset(PORT1);
canReset(PORT2);
canExitHW();
clrscr();

}

 DataMonitor Utility

Software Overview
The PCM-3680 comes with a utility disk with the following
software capabilities:

• CAN controller configuration

• CAN transmission monitoring

• Terminal emulation

Main Menu

Run DataMonitor at the DOS prompt. DataMonitor's main
menu screen will appear as shown below:

The main screen consists of:

A. Menu bar: Lists the available functions. From the main
menu you can select Configuration, Monitoring, and
Terminal.

B. Monitor screen: Shows monitored data, including
message index, CAN device ID, data length, and data.

C. Status fields: Display the status of the two ports and
the status register of the CAN controllers.

D. On-line help/message bar: Shows various key
commands and states the function of the currently
highlighted item.

Configuration
Before you transmit a CAN object, you must configure the
CAN controller by selecting the <Config> menu with the
cursor keys and pressing <Enter>. The Configuration
function determines the ports to be used and their
communication parameters.

D

C

C

B

6 PCM-3680 User's Manual

Transmitting Data

To transmit data, the PCM-3680 must be connected to a
CAN network with at least one node and the configuration
for the card must be complete.

First, select <Terminal> to edit the data. Enter the port, the
object ID and the data bytes as hexadecimal value. Press
<Enter> to begin data transmission. If the CAN controller is
configured correctly and the transmission has been
successfully completed, every CAN object will be shown in
order of appearance at the left side of the screen.

Testing Data Transmission

To test CAN transmission without actually sending, connect
Port 1 to Port 2 on the PCM-3680. Select <Terminal> and
enter port 1 as transmitting port. Port 2 will therefore be
designated as receiving port.

Note: To send Data Frame (Transmit), enter "0" for RTR. If
you want to send Remote Frame (Request), enter "1" for
RTR.Receive Buffer Status

Data Overrun Status
Transmit Buffer Access
Transmission Complete Status
Receive Status
Transmit Status
Error Status
Bus Status

Monitor Screen

The monitored data for a selected port appears in the
monitor screen (see area B in the diagram under Main
Menu section.)

If the CAN controller is configured correctly and the
transmission has been successfully completed, every CAN
object will be shown in order of appearance.

Status Fields

Status fields at the right of the screen display the status of
the two ports:

The status fields show information including the Mode
(Normal or Reset), Acceptance Code, Acceptance Mask,
BTR0, BTR1, Output Control Register, and Status Register.
The normal value of the Status Register is:

0 0 0 0 1 1 0 0

The registers can only be read if the CAN controller is in
Normal mode. If the CAN controller operates correctly and
the transmission has been completed successfully, the
status register will show as the normal value: 00001100. If
the Error Status and/or the Bus Status is 1, you have
selected the wrong baud rate or the CAN cable is damaged.
Also check the correct bus terminator.

Terminal
This function provides a direct way to:

1. Send data over the CAN network.
2. Test CAN transmission.

Select <Terminal> from the menu bar for the following
screen:

 7PCM-3680 User's Manual

}
buffer-
buffer}} }} }

 Register Structure

This appendix gives a brief description of the CAN
controller registers. For more detailed information, please
refer to the Stand-alone CAN-controller Data Book from
Philips Semiconductors Microcontroller Products. (You may
also find the information on the enclosed disk under the
"Manual" directory, in the Word 6.0 file: REGISTER.DOC.)

CAN Controller Address Allocation

Philips PCX82C200 CAN Controller

ADDRESS

Register address map

P6

P5

 Wiring

Pin Assignments
The following figure shows the pin assignments for the
card's DB-9 connectors.

Termination Resistor Setup

Termination restistors are factory-installed to allow for
impedance matching. These resistors can be enabled by
using jumpers number 5 and 6 (shown below). Jumper 5
enables the terminal resistor for port 1, while jumper 6
enables the terminal resistor for port 2. The value of the
resistor equals the characteristic impedence of the signal
wires (approximately 120 Ω)

The following figure shows resistor placements. Port TR1
enables jumper JP5, and TR2 enables jumper JP6

CAN termination resistor installation

CAN signal wiring

The CAN standard supports half-duplex communication.
This means that just two wires are used to transmit and
receive data.

Wiring topograhpy

Wiring connections are as follows:

PCM-3860 DTE (male DB-9) Terminal DTE

Pin Signal Signal
7 CAN-H CAN-H

3 GND GND

2 CAN-L CAN-L

0 CONTROL

1 COMMAND

2 STATUS

3 INTERRUPT

4 ACCEPTANCE CODE

5 ACCEPTANCE MASK

6 BUS TIMING 0

7 BUS TIMING 1

8 OUTPUT CONTROL

9 TEST

10 IDENTIFIER

11 RTR BIT, DATA LENGTH CODE

12 BYTE 1

13 BYTE 2

14 BYTE 3

15 BYTE 4

16 BYTE 5

17 BYTE 6

18 BYTE 7

19 BYTE 8

20 IDENTIFIER

21 RTR BIT, DATA LENGTH CODE

22 BYTE 1

23 BYTE 2

24 BYTE 3

25 BYTE 4

26 BYTE 5

27 BYTE 6

28 BYTE 7

29 BYTE 8

} descriptor

 buffers

} descriptor

} receivereceive}data
field

transmit

ffield
datadata

control
segment

JP5

JP6

T
R

1
T

R
2

12
0Ω

12
0Ω

D.T.E

CAN

Transceiver

D.T.E

CAN

Transceiver

D.T.E

CAN

Transceiver

CAN-H
CAN-H

CAN-L CAN-L

CAN-H CAN-L

120 ohms 120 ohms

8 PCM-3680 User's Manual

TITLE ADDRESS 7 6 5 4 3 2 1 0

Control Segment

1
Control
Register

0
Test

Mode
Sync Reserved

Overrun
Interrupt
Enable

Error
Interrupt
Enable

Transmit
Interrupt
Enable

Receive
Interrupt
Enable

Reset
Request

2
Command
Register

1 Reserved Reserved Reserved
Go to
Sleep

Clear
Overrun
Status

Release
Receive
Buffer

Abort
Transmission

Transmission
Request

3
Status

Register
2

Bus
Status

Error
Status

Transmit
Status

Receive
Status

Transmission
Complete

Status

Transmit
Buffer
Access

Data Overrun
Receive

Buffer Status

4
Interrupt
Register

3 Reserved Reserved Reserved
Wake-Up
Interrupt

Overrun
Interrupt

Error
Interrupt

Transmit
Interrupt

Receive
Interrupt

5
Acceptance

Code
Register

4 AC.7 AC.6 AC.5 AC.4 AC.3 AC.2 AC.1 AC.0

6
Acceptance

Mask
Register

5 AM.7 AM.6 AM.5 AM.4 AM.3 AM.2 AM.1 AM.0

7
Bus Timing
Register 0

6 SJW.1 SJW.0 BRP.5 BRP.4 BRP.3 BRP.2 BRP.1 BRP.0

8
Bus Timing
Register 1

7 SAM TSEG2.2 TSEG2.1 TSEG2.0 TSEG1.3 TSEG1.2 TSEG1.1 TSEG1.0

9
Output
Control
Register

8 OCTP1 OCTN1 OCPOL1 OCTP0 OCTN0 OCPOL0 OCMODE1 OCMODE0

10
Test Register

(note 1)
9 Reserved Reserved

Map
Internal
Register

Connect
RX

Buffer 0
CPU

Connect TX
Buffer CPU

Access
Internal

Bus

Normal RAM
Conncet

Float Output
Driver

Transmit Buffer

11

Identifier 10 ID.10 ID.9 ID.8 ID.7 ID.6 ID.5 ID.4 ID.3

RTR, Data
Length Code

11 ID.2 ID.1 ID.0 RTR DLC.3 DLC.2 DLC.1 DLC.0

Bytes 1-8 12-19 Data Data Data Data Data Data Data Data

Receive Buffer 0/1

12

Identifier 20 ID.10 ID.9 ID.8 ID.7 ID.6 ID.5 ID.4 ID.3

RTR, Data
Length Code

21 ID.2 ID.1 ID.0 RTR DLC.3 DLC.2 DLC.1 DLC.0

Bytes 1-8 22-29 Data Data Data Data Data Data Data Data

 9PCM-3680 User's Manual

Register descriptions

Control Register (CR)

The Control Register is used to change the behavior of the
PCX82C200. Control bits may be set or reset by the
attatched microcontroller, which uses the Control Register
as a read/write memory.

Command Register (CMR)

A command bit initiates an action within the transfer layer of
the PCX82C200. If a read access is performed to this
address, the byte 11111111 (binary) is returned.

Status Register (SR)

The Status Register reflects the status of the PCX82C200
bus controller. The Status Register appears to the
microcontroller as a read-only memory.

Interrupt Register (IR)

The Interrupt Register allows identification of an interrupt
source. When one or more of this register's bits are set, the
INT pin is activated. All bits are reset by the PCX82C200
after this register is read by the microcontroller. This register
appears to the microcontoller as a read-only memory.

Acceptance Code Register (ACR)

The Acceptance Code Register is part of the acceptance
filter of the PCX82C200. This register can be accessed
(read/write) if the Reset Request bit is set HIGH (present).
When a message which passes the acceptance test is
received and if there is an empty Receive Buffer, then the
respective Descriptor and Data Field are sequentially
stored in this empty buffer. In the case that there is no
empty Receive Buffer, the Data Overrun bit is set HIGH
(overrun).

Acceptance Mask Register (AMR)

The Acceptance Mask Register is part of the acceptance
filter of the PCX82C200. This register can be accessed
(read/write) if the Reset Request bit is set HIGH (present).
The Acceptance Mask Register classifies the correspond-
ing bits of the acceptance code as "relevant" or "don't care"
for acceptance filtering.

Bus Timing Register 0 (BTR0)

The Bus Timing Register 0 defines the values of the Baud
Rate Prescaler (BRP) and the Synchronization Jump Width
(SJW). This register can be accessed (read/write) if the
Reset Request bit is set HIGH (present).

Bus Timing Register 1 (BTR1)

The Bus Timing Register 1 defines the length of the bit
period, the location of the sample point, and the number of
samples to be taken at each sample point. This register can
be accessed (read/write) if the Reset Request bit is set
HIGH (present).

Output Control Register (OCR)

The Output Control Register allows, under software control,
the setup of different driver configurations. This register may
be accessed (read/write) if the Reset Request bit is set
HIGH (present).

Test Register (TR)

The Test Register is used only for production testing.

Transmit Buffer

The Transmit Buffer stores a message from the microcon-
troller to be transmitted by the PCX82C200. It is subdivided
into the Descriptor and Data Field. The Transmit Buffer can
be written to and read from by the microcontroller.

Receive Buffer

The layout of the Receive Buffer and the individual bytes
correspond to the definitions given for the Transmit Buffer
layout, except that the addresses start at 20 instead of 10.

10 PCM-3680 User's Manual

