SCM7B

SCM7B22 Isolated Bipolar Voltage Output Modules

Description

SCM7B22 voltage output modules accept input signals in the $\pm 10V$ range from the process control system. The signal is isolated, buffered, and filtered to provide a unity gain field voltage output (Figure 1).

These modules incorporate a five-pole filtering approach to maximize both time and frequency response by taking advantage of both Thomson (Bessel) and Butterworth characteristics. One pole of the filter is on the process control system side of the isolation barrier; four are on the field side.

After the initial process control system-side filtering, the input signal is chopped by a proprietary chopper circuit and transferred across the transformer isolation barrier, suppressing transmission of common mode spikes and surges. The signal is then reconstructed and filtered for field-side output.

Modules accept a wide 19 - 29VDC power supply range (+24VDC nominal). Their compact packages (2.13"x1.705"x0.605" max) save space and are ideal for high channel density applications. They are designed for easy DIN rail mounting using any of the "-DIN" backpanels.

Features

- Accepts High Level Input to ±10V
- Provides High Level Output to ±10V
- 1500Vrms Transformer Isolation
- Accuracy, ±0.03% of Span Typical, ±0.1% Max
- ANSI/IEEE C37.90.1 Transient Protection
- Output Protected to 120Vrms Continuous
- Input Protected to ±35VDC
- Noise, 2mV Peak (5MHz), 1mV RMS (100kHz)
- CMRR, 100dB
- 80dB Per Decade of Attenuation Above 400Hz
- · Easy DIN Rail Mounting
- · CSA Certified, FM Approved
- CE and ATEX Compliant

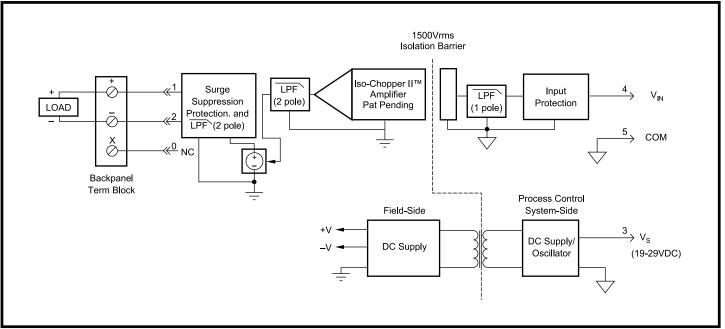


Figure 1: SCM7B22 Block Diagram

Specifications Typical at 25°C and +24VDC

Module	SCM7B22	
Output Signal Range ⁽¹⁾ Effective Available Power ⁽¹⁾ Resistance Protection Continuous Transient Voltage/Current Limit	±10V 20mW <1Ω 120Vrms ANSI/IEEE C37.90.1 ±12.5V, ±40mA	
Input Signal Range Bias Current Resistance Protection	±10V ±0.5nA 2MΩ min ±35Vdc (no damage)	
CMV (Input-to-Output) Continuous Transient CMRR (50 or 60Hz)	1500Vrms ANSI/IEEE C37.90.1 100dB	
Accuracy ⁽²⁾ Nonlinearity ⁽³⁾ Stability (-40°C to +85°C) Gain Output Offset Noise Peak at 5MHz B/W RMS at 10Hz to 100kHz B/W Peak at 0.1Hz to 10Hz B/W	±0.03% Span typical, ±0.1% Span max ±0.01% Span typical, ±0.02% Span max ±35ppm/°C ±0.001% Span/°C 2mV 1mV 10µV RTI	
Frequency and Time Response Bandwidth, -3dB NMR (-3dB at 400Hz) Step Response, 90% Span	400Hz 80dB per decade above 400Hz 1ms	
Supply Voltage Current ⁽¹⁾ Sensitivity	19 to 29VDC 16mA ±0.0001%/%Vs	
Mechanical Dimensions (h)(w)(d)	2.13" x 1.705" x 0.605" max 54.1mm x 43.3mm x 15.4mm max	
Environmental Operating Temperature Range ATEX Group II, Category 3 Storage Temperature Range Relative Humidity Emissions EN61000-6-4 Radiated, Conducted Immunity EN61000-6-2 RF ESD, EFT, Surge, Voltage Dips	-40°C to +85°C -20°C to +40°C -40°C to +85°C 0 to 95% noncondensing ISM, Group 1 Class A ISM, Group 1 Performance A ±0.5% Span Error Performance B	

NOTES:

(1) Output Range and Supply Current specifications are based on minimum output load resistance. Minimum output load resistance is calculated by V_{ourr}/P_{E^+} where P_E is the Output Effective Available Power that guarantees output range, accuracy, and linearity specifications. (2) Accuracy includes the effects of repeatability, hysteresis, and linearity. (3) Nonlinearity is calculated using the best-fit straight line method.

Ordering Information

Model	Input Range	Output Range
SCM7B22	±10V	±10V