MS-9A97

Industrial Data Machine

Copyright and Trademarks Notice

Copyright © Micro-Star Int'l Co., Ltd. All rights reserved. The MSI logo used is a registered trademark of Micro-Star Int'l Co., Ltd. All other marks and names mentioned may be trademarks of their respective owners. No warranty as to accuracy or completeness is expressed or implied. MSI reserves the right to make changes to this document without prior notice.

Revision History

Revision Date V1.1 2020/04

Technical Support

If a problem arises with your product and no solution can be obtained from the user's manual, please contact your place of purchase or local distributor. Alternatively, please visit https://www.msi.com/support/ for further guidance.

Safety Instructions

- Always read the safety instructions carefully.
- Keep this User's Manual for future reference.
- Keep this equipment away from humidity.
- Lay this equipment on a reliable flat surface before setting it up.
- The openings on the enclosure are for air convection hence protects the equipment from overheating. DO NOT COVER THE OPENINGS.
- Make sure the voltage of the power source and adjust properly 110/220V before connecting the equipment to the power inlet.
- Place the power cord such a way that people can not step on it. Do not place anything over the power cord.
- Always Unplug the Power Cord before inserting any add-on card or module.
- All cautions and warnings on the equipment should be noted.
- Never pour any liquid into the opening that could damage or cause electrical shock.
- If any of the following situations arises, get the equipment checked by service personnel:
 - ▶ The power cord or plug is damaged.
 - Liquid has penetrated into the equipment.
 - ► The equipment has been exposed to moisture.
 - The equipment does not work well or you can not get it work according to User's Manual.
 - The equipment has dropped and damaged.
 - ► The equipment has obvious sign of breakage.
- DO NOT LEAVE THIS EQUIPMENT IN AN ENVIRONMENT UNCONDI-TIONED, STORAGE TEMPERATURE ABOVE 60°C, IT MAY DAMAGE THE EQUIPMENT.

警告使用者:

此為甲類資訊技術設備,於居住環境中使用時,可能會造成射頻擾動,在此種情況下,使用者會被要求採取某些適當的對策。

Chemical Substances Information

In compliance with chemical substances regulations, such as the EU REACH Regulation (Regulation EC No. 1907/2006 of the European Parliament and the Council), MSI provides the information of chemical substances in products at:

https://www.msi.com/html/popup/csr/evmtprtt_pcm.html

Battery Information

European Union:

Batteries, battery packs, and accumulators should not be disposed of as unsorted household waste. Please use the public collection system to return, recycle, or treat them in compliance with the local regulations.

Taiwan:

For better environmental protection, waste batteries should be collected separately for recycling or special disposal.

California, USA:

The button cell battery may contain perchlorate material and requires special handling when recycled or disposed of in California.

For further information please visit:

https://www.dtsc.ca.gov/hazardouswaste/perchlorate/

Danger of explosion if battery is incorrectly replaced. Replace only with the same or equivalent type recommended by the manufacturer.

CE Conformity

Hereby, Micro-Star International CO., LTD declares that this device is in compliance with the essential safety requirements and other relevant provisions set out in the European Directive.

FCC-A Radio Frequency Interference Statement

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference, in which case the user will be required to correct the interference at his own expense.

Notice 1

The changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

Notice 2

Shielded interface cables and AC power cord, if any, must be used in order to comply with the emission limits.

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:

- 1) this device may not cause harmful interference, and
- this device must accept any interference received, including interference that may cause undesired operation.

WEEE Statement

Under the European Union ("EU") Directive on Waste Electrical and Electronic Equipment, Directive 2012/19/EU, products of "electrical and electronic equipment" cannot be discarded as municipal waste anymore and manufacturers of covered electronic equipment will be obligated to take back such products at the end of their useful life.

CONTENTS

	Copyright and Trademarks Notice	II
	Revision History	ii
	Technical Support	ii
	Safety Instructions	iii
	Chemical Substances Information	iv
	Battery Information	iv
	CE Conformity	V
	FCC-A Radio Frequency Interference Statement	V
	WEEE Statement	V
1.	Overview	1-1
	Package Contents	1-2
	System Overview	1-3
	System Specifications	1-7
	Motherboard Jumpers	1-9
2.	Getting Started	2-1
	Installation Tools	2-2
	System Cover	2-3
	mSATA Card	2-4
	DIN Rail Mount	2-5
	Wall Mount (Optional)	2-6
	VESA Mount (Optional)	2-7
3.	BIOS Setup	3-1
	Entering Setup	3-2
	The Menu Bar	3-4
	Main	3-5
	Advanced	3-6
	Boot	3-11
	Security	3-12
	Chipset	3-16
	Power	3-17
	Save & Exit	3-19
Αŗ	ppendix GPIO WDT Programming	A-1
	Abstract	A-2
	General Purposed IO	A-3
	Watchdog Timer	A-4

1 Overview

Thank you for choosing the MS-9A97, an excellent industrial data machine from MSI.

The MS-9A97's wide heatsink fanless solution eliminates the noise and the risk of fan's failure. Furthermore, it supports VESA wall-mount interface for various scenarios like digital signage, kiosk, industrial control and POS with affordable expenditure, which not only meets the demand of Industrial applications but also fulfills the needs of companies, governments and institutes for general applications.

Package Contents

- 1. MS-9A97 Industrial Data Machine
- 2. Power Adapter & Power Cord
- 3. DIN Rail Mount Set
- 4. Wall Mount Set (Optional)
- 5. VESA Mount Set (Optional)
- 6. Phoenix Plug-in Terminal Block
- 7. Jumper Caps
- 8. Driver/Utility Disc
- * Contact your place of purchase or local distributor if any of the items is damaged or missing.

* Package contents may vary by country.

System Overview

> System I/O & Controls

1-3

WiFi Antenna Connector (Optional)

This connector allows you to connect an external antenna for wireless I AN

Reset Button
Press the button to reset the system.

AT/ATX Switch
This switch allows users to choose between AT and ATX power supplies.

Mini DisplayPort
Mini DisplayPort is a digital display interface standard. This connector is used to connect a monitor with Mini DisplayPort inputs.

The High-Definition Multimedia Interface (HDMI) is an all-digital audio/video interface capable of transmitting uncompressed streams. HDMI supports all TV format, including standard, enhanced, or high-definition video, plus multi-channel digital audio on a single cable.

GbE RJ45 Port
The standard RJ45 LAN jack is provided for connection to the Local
Area Network (LAN). You can connect a network cable to it.

	LED	LED Status	Description
	Active LED	Off	No link
		Yellow	Linked
Speed LED———Active		Blinking	Data activity
LED	Speed LED	Off	10 Mbps connection
		Green	100 Mbps connection
		Orange	1 Gbps connection

USB 3.2 Gen 1 Port
USB 3.2 Gen 1, the SuperSpeed USB, delivers up to 5Gbps highspeed data transfer for various devices, such as storage devices,
hard drives, video cameras, etc.

Hard Disk Drive LED
This indicator shows the activity status of the HDD. It flashes when the system is accessing data on the HDD and remains off when no disk activity is detected.

Power Button

Press the button to turn the system on or off.

Power Jack

Power supplied through this jack supplies power to the system.

Important

Your power source can either be connected to the Power Jack or the Phoenix DC Power Connector. **Avoid connecting to both simultaneously.**

RS232/422/485 Serial Port

The serial port is a 16550A high speed communications port that sends/receives 16 bytes FIFOs. It supports barcode scanners, barcode printers, bill printers, credit card machine, etc.

RS232		RS422		RS485				
1	DCD	1	TXD-	1	TXD-			
2	RXD	2	RXD+	2	NC			
3	TXD	3	TXD+	3	TXD+			
4	DTR	4	RXD-	4	NC			
5	GND	5	GND	5	GND			
6	DSR	6	NC	6	NC			
7	RTS	7	NC	7	NC			
8	CTS	8	NC	8	NC			
9	POWER	9	POWER	9	POWER			

Line-Out Jack

This connector is provided for headphones or speakers.

Grounding Point

The Grounding Point is provided to connect a grounding wire.

Phoenix DC Power Connector

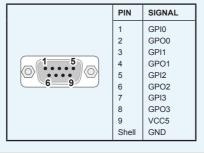
The system is designed with a Phoenix connector that carries DC input.

Important

Your power source can either be connected to the Power Jack or the Phoenix DC Power Connector. **Avoid connecting to both simultaneously.**

Extend Switch Connector

This connector is provided for remote power button control.


USB 2.0 Port

The USB (Universal Serial Bus) port is for attaching USB devices such as keyboard, mouse, or other USB-compatible devices.

DIO Port

This port is provided for the Digital Input/Output (DIO) peripheral module.

System Specifications

Processor

■ Intel® Atom™ x5 E3940 Processor

Important

Intel® Apollo Lake Platform does not support turning off the system by pushing the power button for 1 second.

Memory

■ Onboard 4GB Dual-channel LPDDR4-2400MHz Memory

Network

■ 2 x Intel® I211-AT GbF I AN

Audio

- Realtek® ALC887-VD2-CG HDA Codec
- Compliant with Azalia 1.0 specs

Graphics

- Integrated Intel® HD Graphics
- Shared system memory up to 1.7GB SDRAM
- 2 independent displays
- HDMI up to 3840 x 2160 @30Hz
- Mini-DP up to 4096 x 2160 @60Hz

Storage

■ 64GB mSATA SSD (default)

Expansion Slot

- 1 x Mini-PCle1 (Full-size, with Nano SIM Holder)
- 1 x Mini-PCle2 (Half-size, shared with mSATA)

Front Panel Input/Output

- 2 x WiFi Antenna Connectors (Optional)
- 1 x Reset Button
- 1 x AT/ATX Switch
- 1 x Mini DisplayPort
- 1 x HDMI Port
- 2 x GbE RJ45 Ports
- 2 x USB 3.2 Gen 1 Ports
- 1 x HDD LED
- 1 x Power Button
- 1 x Power Jack

Rear Panel Input/Output

■ 2 x WiFi Antenna Connectors (Optional)

Right Panel Input/Output

- 2 x RS232/422/485 Serial Ports
- 1 x Line-Out Jack
- 1 x Grounding Point
- 1 x Phoenix DC Power Connector

Left Panel Input/Output

- 1 x Extend Switch Connector
- 2 x USB 2.0 Ports
- 1 x DIO Port

Power Supply

- 36 Watt Power Adapter
 - ► Input: 100~240Vac, 50~60Hz, 1.8A
 - ► Output: 12Vdc, 3.0A
 - ► Full power consumption for COM1~COM2
 - » Each COM port 5V/1A Max
 - » Each COM port 12V/0.5A Max

Important

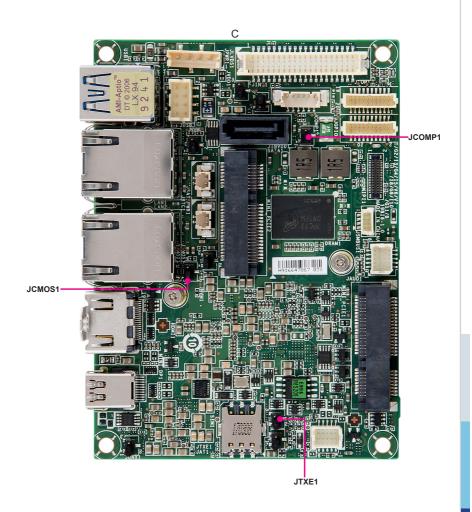
Before powering on the system, recheck the adapter to ensure safety.

Dimension & Weight

- 153 x 130 x 35 mm
- 0.841 kg

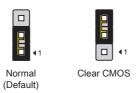
Regulatory Compliance

- EMC: FCC Class A, CE, RCM, BSMI, VCCI
- Safety: BSMI
- Vibration & Shock: IEC61373 Category 1. Class A
- RoHS Compliant


Environment

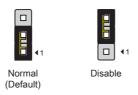
- Operating Temperature
 - ► -10 ~ 50°C (with mSATA)
 - ► -10 ~ 60°C (with WT mSATA)
- Storage Temperature: -20 ~ 80°C
- Humidity: 10 ~ 90% RH, non-condensing

Motherboard Jumpers


Important

Avoid adjusting jumpers when the system is on; it will damage the motherboard.

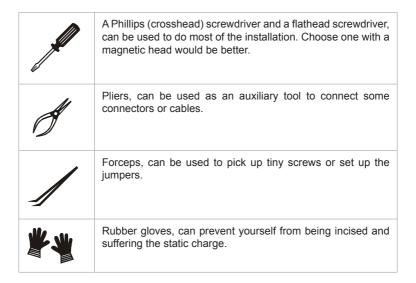
1-9


Clear CMOS Jumper: JCMOS1

Serial Port Power Jumper: JCOMP1

TXE F/W Jumper: JTXE1

2 Getting Started


This chapter provides you with the information on hardware setup procedures. While doing the installation, be careful in holding the components and follow the installation procedures. For some components, if you install in the wrong orientation, the components will not work properly.

Use a grounded wrist strap before handling computer components. Static electricity may damage the components.

Important

Always unplug the power cord before installing any components.

Installation Tools

System Cover

1. Place the system horizontally on a flat and steady surface. Locate and remove the screws that secure the system cover.

2. Lift the cover carefully upwards and remove it from the system.

mSATA Card

For Mini PCIe cards that draw power from the motherboard, make sure they operate at exactly the same voltage as the system power source.

Locate the MINI_PCIE2 slot.
 Remove the screw preinstalled on the motherboard.

2. Insert the mSATA card into the slot at a 45-degree angle.

3. Push the card gently downwards and fasten it with the screw.

DIN Rail Mount

- 1. Locate the screw holes for the DIN rail mount bracket.
- 2. Put the DIN rail mount bracket on the system with screw holes aligned.
- 3. Fasten the screws to fix the DIN rail mount bracket to the system.

Wall Mount (Optional)

- Assemble the wall mount brackets by inserting the rubber pads into the bracket holes and then inserting the screws.
- 2. Flip over the system and locate the screw holes for wall mount brackets.
- 3. Place the wall mount brackets along the sides of the system with screw holes aligned.
- 4. Fasten the screws to fix the wall mount brackets to the system.

VESA Mount (Optional)

1. Install the wall mount brackets onto the system.

- 2. Locate the VESA mount screw holes on the intended device.
- 3. Fasten the VESA mount plate to the device with the supplied screws.
- 4. Mount the system onto the VESA mount plate.

5. Tighten the thumbscrew at the bottom of the VESA mount plate to secure the system.

3 BIOS Setup

This chapter provides information on the BIOS Setup program and allows users to configure the system for optimal use.

Users may need to run the Setup program when:

- An error message appears on the screen at system startup and requests users to run SETUP.
- Users want to change the default settings for customized features.

Important

- Please note that BIOS update assumes technician-level experience.
- As the system BIOS is under continuous update for better system performance, the illustrations in this chapter should be held for reference only.

Entering Setup

Power on the computer and the system will start POST (Power On Self Test) process. When the message below appears on the screen, press or <F2> key to enter Setup.

Press or <F2> to enter SETUP

If the message disappears before you respond and you still wish to enter Setup, restart the system by turning it OFF and On or pressing the RESET button. You may also restart the system by simultaneously pressing <Ctrl>, <Alt>, and <Delete> keys.

Important

The items under each BIOS category described in this chapter are under continuous update for better system performance. Therefore, the description may be slightly different from the latest BIOS and should be held for reference only.

Control Keys

\leftarrow \rightarrow	Select Screen
$\uparrow \downarrow$	Select Item
Enter	Select
+ -	Change Option
F1	General Help
F7	Previous Values
F9	Optimized Defaults
F10	Save & Reset
Esc	Exit

Getting Help

After entering the Setup menu, the first menu you will see is the Main Menu.

Main Menu

The main menu lists the setup functions you can make changes to. You can use the arrow keys ($\uparrow\downarrow$) to select the item. The on-line description of the highlighted setup function is displayed at the bottom of the screen.

Sub-Menu

If you find a right pointer symbol appears to the left of certain fields that means a sub-menu can be launched from this field. A sub-menu contains additional options for a field parameter. You can use arrow keys ($\uparrow\downarrow$) to highlight the field and press <Enter> to call up the sub-menu. Then you can use the control keys to enter values and move from field to field within a sub-menu. If you want to return to the main menu, just press the <Esc>.

General Help <F1>

The BIOS setup program provides a General Help screen. You can call up this screen from any menu by simply pressing <F1>. The Help screen lists the appropriate keys to use and the possible selections for the highlighted item. Press <Esc> to exit the Help screen.

The Menu Bar

▶ Mair

Use this menu for basic system configurations, such as time, date, etc.

▶ Advanced

Use this menu to set up the items of special enhanced features.

▶ Boot

Use this menu to specify the priority of boot devices.

► Security

Use this menu to set supervisor and user passwords.

▶ Chipset

This menu controls the advanced features of the onboard chipsets.

▶ Power

Use this menu to specify your settings for power management.

► Save & Exit

This menu allows you to load the BIOS default values or factory default settings into the BIOS and exit the BIOS setup utility with or without changes.

Main

► System Date

This setting allows you to set the system date. The date format is <Day>, <Month> <Date> <Year>.

► System Time

This setting allows you to set the system time. The time format is <Hour> <Minute> <Second>.

► SATA Mode Selection

This setting specifies the SATA controller mode.

Advanced

► Full Screen Logo Display

This BIOS feature determines if the BIOS should hide the normal POST messages with the motherboard or system manufacturer's full-screen logo.

When it is enabled, the BIOS will display the full-screen logo during the boot-up sequence, hiding normal POST messages.

When it is disabled, the BIOS will display the normal POST messages, instead of the full-screen logo.

Please note that enabling this BIOS feature often adds 2-3 seconds of delay to the booting sequence. This delay ensures that the logo is displayed for a sufficient amount of time. Therefore, it is recommended that you disable this BIOS feature for a faster boot-up time.

► Bootup NumLock State

This setting is to set the Num Lock status when the system is powered on. Setting to [On] will turn on the Num Lock key when the system is powered on. Setting to [Off] will allow users to use the arrow keys on the numeric keypad.

▶ Option ROM Messages

This item is used to determine the display mode when an optional ROM is initialized during POST. When set to [Force BIOS], the display mode used by AMI BIOS is used. Select [Keep Current] if you want to use the display mode of optional ROM.

► Super IO Configuration

► Serial Port 1, Serial Port 2

This setting enables/disables the specified serial port.

► Change Settings

This setting is used to change the address & IRQ settings of the specified serial port.

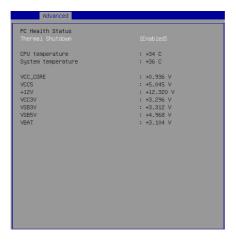
▶ Mode Select

Select an operation mode for the specified serial port.

► FIFO Mode

This setting controls the FIFO data transfer mode.

► Shared IRQ Mode


This setting provides the system with the ability to share interrupts among its serial ports.

► Watch Dog Timer

You can enable the system watch-dog timer, a hardware timer that generates a reset when the software that it monitors does not respond as expected each time the watch dog polls it.

► H/W Monitor

These items display the current status of all monitored hardware devices/components such as voltages, temperatures and all fans' speeds.

► Thermal Shutdown

This setting enables/disables the thermal shutdown function for system thermal protection.

► CPU Configuration

► Intel Virtualization Technology

Virtualization enhanced by Intel Virtualization Technology will allow a platform to run multiple operating systems and applications in independent partitions. With virtualization, one computer system can function as multiple "Virtual" systems.

► EIST

EIST (Enhanced Intel SpeedStep Technology) allows the system to dynamically adjust processor voltage and core frequency, which can result in decreased average power consumption and decreased average heat production. When disabled, the processor will return the actual maximum CPUID input value of the processor when queried.

► C-States

C-state performance indicates the ability to run the processor in lower power states when the PC is idle. This setting enables/disables the C-State Configuration for power saving purposes.

▶ Network Stack Configuration

This menu provides Network Stack settings for users to enable network boot (PXE) from BIOS.

► Network Stack

When this setting is set to [Enabled], the system will boot via the network instead of a disk drive.

▶ PCI/PCIE Device Configuration

► Legacy USB Support

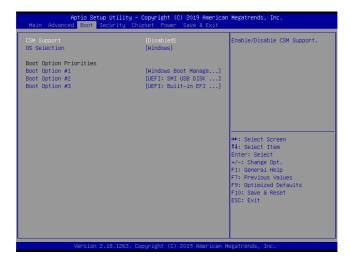
Set to [Enabled] if you need to use any USB 1.1/2.0 device in the operating system that does not support or have any USB 1.1/2.0 driver installed, such as DOS and SCO Unix.

► Audio Controller

This setting enables/disables the onboard audio controller.

► Launch OnBoard LAN OpROM

These settings enable/disable the initialization of the onboard/onchip LAN Boot ROM during bootup. Selecting [Disabled] will speed up the boot process.


▶ GPIO Group Configuration

► GPO0 ~ GPO3

These settings control the operation mode of the specified GPIO.

Boot

► CSM Support

This setting enables/disables the support for Compatibility Support Module, a part of the Intel Platform Innovation Framework for EFI providing the capability to support legacy BIOS interfaces.

▶ OS Selection

This setting allows users to select the Operating System.

► Boot Option Priorities

This setting allows users to set the sequence of boot devices where BIOS attempts to load the disk operating system.

Security

► Administrator Password

Administrator Password controls access to the BIOS Setup utility.

► User Password

User Password controls access to the system at boot and to the BIOS Setup utility.

▶ Serial Port Console Redirection

► Console Redirection

Console Redirection operates in host systems that do not have a monitor and keyboard attached. This setting enables/disables the operation of console redirection. When set to [Enabled], BIOS redirects and sends all contents that should be displayed on the screen to the serial COM port for display on the terminal screen. Besides, all data received from the serial port is interpreted as keystrokes from a local keyboard.

► Console Redirection Settings

► Terminal Type

To operate the system's console redirection, you need a terminal supporting ANSI terminal protocol and a RS-232 null modem cable connected between

the host system and terminal(s). This setting specifies the type of terminal device for console redirection.

► Bits per second, Data Bits, Parity, Stop Bits

This setting specifies the transfer rate (bits per second, data bits, parity, stop bits) of Console Redirection.

▶ Flow Control

Flow control is the process of managing the rate of data transmission between two nodes. It's the process of adjusting the flow of data from one device to another to ensure that the receiving device can handle all of the incoming data. This is particularly important where the sending device is capable of sending data much faster than the receiving device can receive it.

► VT-UTF8 Combo Key Support

This setting enables/disables the VT-UTF8 combination key support for ANSI/VT100 terminals.

▶ Recorder Mode, Resolution 100x31

These settings enable/disable the recorder mode and the resolution 100x31

► Legacy OS Redirection Resolution

This setting specifies the redirection resolution of legacy OS.

► Putty Keypad

PuTTY is a terminal emulator for Windows. This setting controls the numeric keypad for use in PuTTY.

▶ Redirection After BIOS POST

This setting determines whether or not to keep terminals' console redirection running after the BIOS POST has booted.

► Security Configuration

► TXE FW Version

The setting shows the firmware information of the Intel Trusted Execution Engine (TXE).

TXE HMRFPO

The setting enables/disables TXE HMRFPO (Host ME Region Flash Protection Override).

►TXE EOP Message

This setting determines whether or not to send EOP (Exchange Online Protection) message before entering OS.

Chipset

► DVMT Pre-Allocated

This setting defines the DVMT pre-allocated memory. Pre-allocated memory is the small amount of system memory made available at boot time by the system BIOS for video. Pre-allocated memory is also known as locked memory. This is because it is "locked" for video use only and as such, is invisible and unable to be used by the operating system.

► DVMT Total Gfx Mem

This setting specifies the memory size for DVMT.

Power

▶ Restore AC Power Loss

This setting specifies whether your system will reboot after a power failure or interrupt occurs. Available settings are:

[Power Off]	Leaves the computer in the power off state.
[Power On]	Leaves the computer in the power on state.
[Last State]	Restores the system to the previous status before power failure or interrupt occurred.

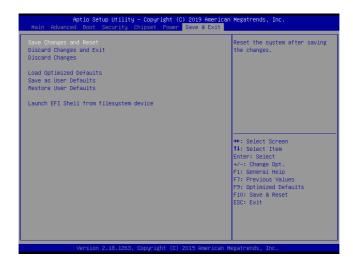
► Deep Sleep Mode

The setting enables/disables the Deep S5 power saving mode. S5 is almost the same as G3 Mechanical Off, except that the PSU still supplies power, at a minimum, to the power button to allow return to S0. A full reboot is required. No previous content is retained. Other components may remain powered so the computer can "wake" on input from the keyboard, clock, modem, LAN, or USB device.

** Advanced Resume Events Control **

► PCIE PME

This field specifies whether the system will be awakened from power saving modes when activity or input signal of onboard PCIE PME is detected.


► USB from S3/S4

The item allows the activity of the USB device to wake up the system from S3/S4 sleep state.

► RTC

When [Enabled], your can set the date and time at which the RTC (real-time clock) alarm awakens the system from suspend mode.

Save & Exit

► Save Changes and Reset

Save changes to CMOS and reset the system.

▶ Discard Changes and Exit

Abandon all changes and exit the Setup Utility.

► Discard Changes

Abandon all changes.

► Load Optimized Defaults

Use this menu to load the default values set by the motherboard manufacturer specifically for optimal performance of the motherboard.

► Save as User Defaults

Save changes as the user's default profile.

▶ Restore User Defaults

Restore the user's default profile.

► Launch EFI Shell from filesystem device

This setting helps to launch the EFI Shell application from one of the available file system devices.

Appendix GPIO WDT Programming

This appendix provides WDT (Watch Dog Timer) and GPIO (General Purpose Input/ Output) programming guide.

Abstract

In this document, code examples based on C programming language provided for customer interest. **Inportb, Outportb, Inportl** and **Outportl** are basic functions used for access IO ports and defined as following.

Inportb: Read a single 8-bit I/O port.

Outportb: Write a single byte to an 8-bit port.

InportI: Reads a single 32-bit I/O port.

Outportl: Write a single long to a 32-bit port.

General Purposed IO

1. General Purposed IO - GPIO/DIO

The GPIO port configuration addresses listed in the following table:

Name	IO Port	IO address	Name	IO Port	IO address
N_GPI0	0xA05	Bit 3	N_GPO0	0xA10	Bit 0
N_GPI1	0xA05	Bit 4	N_GPO1	0xA10	Bit 1
N_GPI2	0xA05	Bit 5	N_GPO2	0xA10	Bit 2
N_GPI3	0xA05	Bit 6	N_GPO3	0xA10	Bit 3

1.1 Set output value of GPO

- 1. Read the value from GPO port.
- 2. Set the value of GPO address.
- 3. Write the value back to GPO port.

```
Example: Set N_GPO0 output "high"
```

Example: Set N_GPO1 output "low"

1.2 Read input value from GPI

- 1. Read the value from GPI port.
- 2. Get the value of GPI address.

Example: Get N_GPI2 input value.

```
      val = Inportb (0xA05);
      // Read value from N_GPI2 port.

      val = val & (1<<5);</td>
      // Read N_GPI2 address (bit 5).

      if (val)
      printf ("Input of else
      N_GPI2
      is High");

      else
      printf ("Input of N_GPI2 is Low");
      N_GPI2 is Low");
```

Watchdog Timer

2. Watchdog Timer - WDT

The base address (WDT_BASE) of WDT configuration registers is 0xA10.

2.1 Set WDT Time Unit

2.2 Set WDT Time

```
Outportb (WDT_BASE + 0x06, Time); // Write WDT time, value 1 to 255.
```

2.3 Enable WDT

2.4 Disable WDT

2.5 Check WDT Reset Flag

If the system has been reset by WDT function, this flag will set to 1.

2.6 Clear WDT Reset Flag

```
val = Inportb (WDT_BASE + 0x05); // Read current WDT setting
val = val | 0x40; // Set 1 to WDTMOUT_STS (bit 6);
Outportb (WDT_BASE + 0x05, val); // Write back WDT setting
```